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What do satellite observations have to do with climate?

CCI and similar efforts stress measurements of
important physical quantities (ECV) that are

consistent over time (CDR)

The working assumption is that retrievals of physical quantities are more useful
than raw measurements

For clouds and aerosols (and likely composition) this is certainly true.

How are these data being used, and what interesting opportunities are there!?



Satellite observations and climate state estimation

Operational aerosol forecasts are now routine
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Satellite observations and climate state estimation
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Models used for state estimation are used in other contexts
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Nicolas Bellouin, Reading; update to Bellouin et al. 2013, 10.5194/acp-13-2045-2013



Comparison to models including evaluation
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Routine evaluation becomes routine...
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... but can be misleading

“Here the progress that has been made in recent years is measured by comparing ..
cloud properties [cloud amount, liquid water path, and cloud radiative forcing] ...
from the CMIP5 models with satellite observations and with results from
comparable CMIP3 experiments. ...the differences in the simulated cloud
climatology from CMIP3 and CMIP5 are generally small, and there is very little to
no improvement apparent in the tropical and subtropical regions in CMIP5.”

Lauer and Hamilton 2013, 10.1175/)CLI-D-12-00451.1

“... based on these biases in the annual mean, Taylor diagram metrics, and RMSE,
there is virtually no progress in the simulation fidelity of [outgoing TOA radiation
and surface solar] fluxes from CMIP3 to CMIP5...We hypothesize that at least a
part of these persistent biases stem from the common global climate model

practice of ignoring the effects of precipitating and/or convective core ice and liquid
in their radiation calculations.”

Li et al. 2013, 10.1002/jgrd.50378
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Two big changes in the last decade
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Climate Model Clouds
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Observational proxies(ii) — a satellite’s-eye view

Simulators map the model description of clouds

Te(1,)(2), T(1,6)(2) or q(.4)(2)

into synthetic pixel-scale observations using rough approximations

Do — / T eue)de P - / T P)eu(2)d:

TOA TOA

sfc
T = / O'C(Z)dZ Te = F_l(F(Te(Z)))

TOA

and aggregate these in space and time as per the observational data sets



Most climate models have observation proxies for clouds

Diagnostics from the CFMIP Observation Simulator Package were requested for
CFMIP2/CMIP5 and have been revised for CFMIP3/CMIP6.

COSP facilitates the mapping of model state information to observations from
passive (MISR, MODIS, ISCCP) and active (CloudSat, CALIPSO) platforms

Observations are produced for each data stream

Can be extended by adding new sensors (e.g. CLARA), analyses...

BY A. BopAs-SALcEDO, M. J. WEBB, S. BoNY, H. CHEPFER, J.-L. DUFRESNE, S. A. KLEIN, Y. ZHANG,
R. MARCHAND, J. M. HAYNES, R. PiNcus, AND V. O. JoHN

By simulating the observations of multiple satellite instruments, COSP enables quantitative

evaluation of clouds, humidity, and precipitation processes in diverse numerical models.

Bodas-Salcedo et al. 201 I, 10.1175/201 IBAMS2856.1



Using proxies to pick apart correlations between aerosols and clouds
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But there’s a lot the proxies can’t do...

We understand the sensitivity of our instruments

See, for example: GEWEX cloud assessment (10.1175/BAMS-D-12-00117.1)
Every observation has a model attached to it.
Our models for interpreting reflectance measurements use

simple forward models (e.g. one-dimensional radiative transfer) operating on

highly parameterized representations of clouds



A simple question. How much of the planet is cloudy?
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On the limits of instrument simulators (i): partly-cloudy pixels

The largest differences in estimates of cloud fraction between MODIS and other
data streams stems from the treatment of partly-cloudy pixels

Most (~50-85%) optically thin pixels are in fact partly-cloudy

This sensitivity can not be represented in observation proxies because they don’t
produce cloudy pixels

But there are sensitivities we are only beginning to understand
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On the limits of instrument simulators (ii): spectral dependence of re

Hints from observations

(optical thickness retrieved at different angles were rarely consistent;
Liang et al. 2009, doi: 10.1029/2008GL037124)

inspired modeling

(large-eddy simulation clouds, three-dimensional radiative transfer;
Zhang et al 2012; 10.1029/2012JD017655)

that led to understanding;

even fully cloudy pixels can be inhomogeneous
reflection is reduced in such pixels by an amount depending on wavelength
reduced reflection looks like absorption i.e. larger cloud drops

i.e that drop size retrievals in inhomogeneous (i.e. most) pixels are based high

Like partly cloudy pixels, this isn’t treated in observation proxies, making
comparisons of modeled and observed size uninformative
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Being careful what we wish for

Making relevant data more useful is a good thing
Finding common ground between retrievals and models is informing modeling

But too great an emphasis on success as “use by climate modelers” can
deemphasize other valuable uses...

... and implies certainty in our data sets that we know isn’t always warranted



Being careful what we do and say

Better than anyone the remote sensing community understands

the limits of the models we use and
how those limits impact our retrievals

We might be better served by devoting less energy to “products” and more to
answering specific questions in context



