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1 Summary

Model benchmarking initiatives have become increasingly important to evaluate the quality of coupled
Earth System Models (ESMs) and to support the model development process. In the frame of the
Coupled Model Intercomparison Project (CMIP), the WGNE/WGCM Climate Model Metrics Panel
has been established to define model performance metrics for model-data intercomparison and analyse
various aspects of ESM simulations with a multitude of observational datasets. However, ESA data is
currently not used in the context of routine model evaluation. There is a strong need in the
international community to develop standardized reference datasets, diagnostic and performance
metrics tools for evaluation of climate model simulations. At present, basically each research group
has established its own approach. Model benchmarking is also important for the Climate Research
Groups (CRGs) within the CCI and various CMUG activities. CMUG therefore contributes to the
development of a community-wide Earth System Model Evaluation Tool (ESMValTool) that is
currently developed by different partners in different projects under DLR lead. CMUG’s specific
contribution is to include ESA CCI data in the ESMValTool so that they can be routinely used to
evaluate models participating in CMIP6.

2 Purpose, scope and content of this report

This deliverable includes a brief overview of an advanced ESMValTool version (v1.0.2), which will
both be released together with an updated user’s guide to CMUG and the ESA CCI teams in fall 2016.
CMUG contributes to this release with technical development of the tool, documentation in form of an
overview and an update of the detailed user’s guide, and by adding ESA CCI datasets to this release.
This advanced version of the ESMValTool is shared for test purposes among CMUG partners in a
password restricted area. CMUG partners who wish to work with the advanced versions of the
ESMValTool need to register for the password restricted ESMValTool development environment
which is hosted at DLR under a subversion controlled repository and a wiki page with documentation.
The ESA CCI datasets included in v1.0.2 are ESA CCI aerosol, cloud, sea ice, soil moisture, sea
surface temperature, ozone, greenhouse gases, and land cover. Selected new ESA CCI datasets are
used in the performance metrics plot as reference dataset to evaluate CMIP5 models. This document
will be updated next year to Edition 3 and will contain a summary of the analysis of the performance
of the CCI datasets presented in Lauer et al. (in preparation).

3 Brief overview of the ESMValTool

A detailed description of ESMValTool (v1.0) has been published in Eyring et al. (2016a). The
ESMValTool’s user’s and developer’s guide is available as supplementary material of Eyring et al.
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(2016a) and on the ESMValTool website http://www.esmvaltool.org/. In this section we give a brief
overview of ESMValTool (v1.0) which is schematically depicted in Figure 1.

Namelists
Interface scripts
Libraries/Utilities
Diag and plot scripts
Input/Output

| namelist Xvz.sal |—>

ESMValTool main driver

derive var.ncl

reformat default
reformat EMAC
reformat obs

Calculate derived variable

Check/reformat the input
according to CF/CMOR

variable defs/

Reformat routines

Call diagnostic scripts
Different languages (typ)
supported: NCL, python, R

JIODVNVIN MOTINHOM

v

diag scripts/lib

Common libraries

JESMValTool

stem Model eValuation Tool

Figure 1: Schematic overview of the ESMValTool structure (from: Eyring et al., 2016a).

The ESMValTool consists of a workflow manager and a number of diagnostic and graphical output
scripts as schematically shown in Figure 1. It builds on a previously published diagnostic tool for
chemistry-climate model evaluation (CCMVal-Diag Tool, Gettelman et al. (2012)), but is different in
its focus. In particular, it extends to ESMs by including diagnostics and performance metrics relevant
for the coupled Earth system, and also focuses on benchmarking models with a standard set of
diagnostics rather than being mostly flexible as the CCMVal-Diag tool. The workflow manager is
written in Python, while a multi-language support is provided in the diagnostic and the graphic
routines. The current version supports Python, NCL and R, but it can be extended to other open-source
languages. The ESMValTool is executed by invoking the main.py script, which takes a namelist as a
single input argument. The namelists are text files written using the XML (eXtensible Markup
Language) syntax and define the data to be read (models and observations), the variables to be
analysed and the diagnostics to be applied.

Within the workflow, the input data are checked for compliance with the CF and Climate Model
Output Rewriter (CMOR, http://pcmdi.github.io/cmor-site/tables.html) standards required by the tool
via a set of dedicated reformatting routines, which are also able to fix the most common errors in the
input data (e.g., wrong coordinates, undefined or missing values, non-compliant units, etc.). It is
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additionally possible to define new variables using variable-specific scripts, for example in order to
calculate the total column ozone from a 3D ozone field, temperature and surface pressure. The
diagnostic and graphic routines are written in a modular and flexible way so that they can be
customized by the user via diagnostic-specific settings in the configuration file (cfg-file) and variable-
specific settings (in the directory variable def dir) without changing the source code. These routines
are complemented by a set of libraries, providing general-purpose code for the most common
operations (statistical analyses, regridding tools, graphic styles, etc.). The output of the tool can be
both netCDF and graphics files in various formats. In addition, a log file is written containing all the
information of a specific call of the main script: creation date of running the script, version number,
analysed data (models and observations), applied diagnostics and variables, and corresponding
references. This helps to increase the traceability and reproducibility of the results.

Besides several small and mostly technical updates and improvements the advanced version of the
ESMValTool (v1.0.2) presented here includes the possibility to use variables from the ESA CCI
datasets aerosol, cloud, sea ice, soil moisture, sea surface temperature, ozone, greenhouse gases, and
land cover for the evaluation of CMIP models. The variables newly implemented are summarized in
Table 1.

Table 1 ESA CCI datasets implemented into the advanced CMUG version of the ESMValTool (v1.0.2).

Dataset Variable(s) Resolution Years Reference(s)
Aerosol od550aer; 1°x1° 1997-2011 Popp et al. (2016)

od870aer,

od550It1aer,

abs550aer
Cloud clt 0.5°x0.5° 1982-2014 Hollmann et al. (2015)
Greenhouse Gases xco2 5°x5° 2003-2008 Reuter et al. (2011)
Ozone toz 1°x1° 1997-2010 Van Roozendael et al. (2015)
Land Cover 2000, 2005, Defourney et al. (2015)

2010
Sea Ice sic 25 km x 25 1992-2008 Sandven et al. (2015)
km

Sea Surface ts 0.05°x0.05° 1991-2013 Merchant et al. (2014a,b)
Temperature
Soil Moisture sm 0.25°x0.25° 1978-2010 Liu et al. (2011, 2012),

Wagner et al. (2012)

4 ESA CCl data

The following sections give an overview on the ESA CCI data implemented in the ESMValTool
v1.0.2 that are now available for comparison with ESM results.

4.1 Aerosol

The ESA Aerosol cci team produces several aerosol long-term datasets to cover GCOS required
aerosol variables such as aerosol optical depth AOD (from radiometers Along-Track Scanning
Radiometer ATSR, MEdium Resolution Imaging Spectrometer = MERIS, POLarization and
Directionality of the Earth’s Reflectances POLDER), or stratospheric vertical extinction profile
(stellar occultation Global Ozone Monitoring by Occultation of Stars GOMOS). As additional
response to the AEROCOM modeling community needs, also information on aerosol composition
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such as fine-mode AOD (from radiometers) or dust AOD (from Infrared Atmospheric Sounding
Interferometer IASI) and absorption AOD (ATSR, POLDER) are derived or estimated by fitting
various assumed aerosol mixtures. For various instruments several algorithms are used in parallel since
algorithm details lead to varying balances between maximizing coverage and optimizing quality. This
can also be used as one means to estimate retrieval uncertainties (condensed into an uncertainty-
weighted ensemble dataset). In the case of the ATSR radiometers, three algorithms (ADV of FMI,
ORAC of Oxford University and RAL, SU of Swansea University) do perform very similarly, but with
regional differences in coverage and accuracy as well as information content. The ESA CCI aerosol
product further analysed in this paper consists of a long-term climate record based on data from two
similar sensors: the Along-Track Scanning Radiometer (ATSR) on the European Remote Sensing
Satellite 2 (ERS2-ATSR2), covering the time period 1995-2003, and the Advanced Along Track
Scanning Radiometer on ESA’s Environmental Satellite (ENVISAT-AATSR), providing data from
2002 through 2012. Through validation by independent experts with ground-based observations, the
Aerosol cci team identified the data produced by the University of Swansea (SU) algorithm as overall
slightly better as described in de Leeuw et al. (2015) and Popp et al. (2016). Into the ESMValTool
v1.0.2, version 4.21 of level 3 monthly mean data consider only years with complete data coverage
have been implemented so far. Incomplete years from either platform (1995, 1996 and 2003) are not
taken into account restricting analyses to the time period 1997-2002. The agreement of the data from
the two platforms during the overlapping period 2002-2003 was found to be very good making it easy
to combine the two datasets into a single time series. Variables implemented into the ESMValTool so
far include total aerosol optical depth (od550aer), fine mode (od5501t1aer), absorption optical depth at
550 nm (abs550aer) and optical depth at 870 nm (0d870aer).

4.2 Cloud

The cloud CCI provides data for the following cloud properties: cloud detection (mask/fraction), cloud
phase, cloud optical thickness, cloud effective radius, cloud liquid/ice water content and cloud albedo.
The retrieved cloud properties are summarized in two global dataset families, the datasets cover the
period 1982 through 2014. Pixel based retrievals (L2 products) are further processed to:
e L3U products: sampled into daily global fields (0.05° resolution, 0.02° for MODIS era over
Europe) and
e L3C products: aggregated into monthly averages and histograms on a global grid with 0.5°
resolution). The monthly averages of LWP and IWP are calculated as in-cloud and all-sky
(a.k.a. grid-mean) values.
The cloud CCI data implemented into the ESMValTool v1.0.2 so far consist of the L3C products
(AVHRR _NOAA-7-fv2.0) and include the total cloud fraction and the total cloud fraction standard
error. The temporal resolution of this product is 1 month.

4.3 Ozone

The ESA CCI total column ozone (toz) dataset consists of combined and harmonized level 3 data
covering the time period between 1997 and 2008. Data from the three platforms/instruments, the
Global Ozone Monitoring Experiment (GOME) onboard the European Research Satellite 2 (ERS-
2/GOME) (1996-2003), ENVISAT/SCIAMACHY (2003-2007), and GOME-2 onboard the Metop
satellites (METEOP/GOME-2) (2007-2011) are provided as a merged gridded dataset by the ESA CCI
teams. As alternative reference dataset for total ozone columns, we use data from the combined NIWA
dataset (Bodeker et al., 2005) (1980-2011).
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The ESA CCI limb gridded profile data consist of merged level 3 monthly and zonally averaged data
covering the time period 2007-2008 from the six different instruments GOME, the Michelson
Interferometer for Passive Atmospheric Sounding (MIPAS), SCIAMACHY, the Optical Spectrograph
and InfraRed Imaging System (OSIRIS), the Sub-Millimetre Radiometer (SMR), and the Atmospheric
Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-
FTS).

44 Seaice

The ESA CCI sea ice dataset provides observational data for sea ice concentration (sic) and sea ice
thickness (sit) that are based on satellite retrievals. The sic dataset is (Lavergne and Rinne, 2014):

e daily gridded sic fields based on passive microwave radiometer measurements;
global maps (both northern hemisphere and southern hemisphere) with 25 km grid spacing;
both a SSM/I and a AMSR-E dataset, processed and delivered separately;
daily maps of total standard error (uncertainty) and quality control flags;
built upon the algorithms and processing software originally developed at the EUMETSAT
OSI SAF for their sic dataset (RD-11).

The ESA CCI sea ice datasets implemented into the ESMValTool v1.0.2 consist of the SSM/I data
covering the time period 1992 to 2008 and the AMSR-E data covering the time period 2003-2010.
Both datasets provide monthly mean sic and sic standard error for the northern and southern
hemisphere on equal area grids at a resolution of 25 km. So far, only the variables sea ice
concentration and sic standard error from the CCI sea ice dataset have been implemented into the
ESMValTool v1.0.2.

45 Soil moisture

The ESA CCI soil moisture product is the first ever multi-decadal satellite based soil moisture product
and is available for the time period 1978-2010 on a daily basis and at a spatial resolution of
0.25°x0.25°. It has been generated by merging active and passive microwave based soil moisture
products from multiple satellite missions (Liu et al., 2011, 2012).

Dorigo et al. (2014) provide a comprehensive validation of the ESA CCI soil moisture using 932 in
situ observation sites from 29 different observing networks (Dorigo et al., 2011, 2013). Despite the
large difficulties in validating coarse resolution satellite soil moisture products with in situ point like
observations (Crow et al., 2012), they conclude that the ESA CCI soil moisture product has an average
unbiased RMSE of 0.05 m® m?. Furthermore, it was shown that trends in the CCI observations largely
agree with those obtained from various reanalysis products, precipitation, and vegetation vigor
(Albergel et al., 2012; Dorigo et al., 2012).

The ESA CCI soil moisture dataset provides a multitude of quality flags and only soil moisture
estimates considered reliable are used to create the data product. Snow covered areas and frozen
ground are typically masked as well as dense or heterogeneously vegetated areas with high optical
depth that are not expected to provide reliable soil moisture estimates (Loew, 2008; Parinussa et al.,
2011).

4.6 Land cover

The ESA CCI land cover product (v1.6.1) provides high resolution (300 m) global land cover
information for three different years (2000, 2005, 2010). This basic land cover product is
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complemented by information on land cover conditions at 1 km resolution which comprise
climatological information of vegetation state, snow and fire occurrences derived from SPOT
vegetation data for the period 1998-2012. In addition a high resolution information layer for surface
water bodies at 150 m resolution derived from microwave observations is provided (Bontemps et al,
2012). Information on the accuracy of the ESA CCI land cover product in comparison to other existing
global land cover datasets is provided by Tsendbazar et al. (2015).

4.7 Sea surface temperature

The ESA CCI sea surface temperature (SST) dataset (Merchant et al., 2014a,b) provides multi-decadal
products of SST derived from infrared brightness temperatures measured from satellites. SST products
(Rayner et al., 2015) are generated at full sensor resolution (1 to >4 km) and are averaged on a regular
latitude-longitude grid (0.05°). A gap-filled (‘L4 SST analysis’) product is currently used with the
ESMValTool diagnostics. The L4 SST analysis is a daily optimal interpolation of satellite data with a
grid resolution of 0.05°. The interpolation system is the Operational Sea surface Temperature and sea-
Ice Analysis (OSTIA) with improved covariance parameterization (Roberts-Jones et al., 2016). The L4
SST analysis has relatively good feature resolution, which is nonetheless lower than the grid
resolution, and varies with the density of satellite coverage (Reynolds et al., 2013). Unlike the
operational OSTIA products (Donlon et al., 2012) and the older OSTIA-based observational re-
processing (Roberts-Jones et al., 2012), no in situ data are used in this CCI product. The product
represents the daily value of SST at a nominal depth of 20 cm, representative of the SST measured by
drifting buoys and bucket observations. This is possible because the lower-level SST CCI products
contain both the skin (radiometric) temperature of the ocean surface at the time of satellite observation
estimated based on radiative transfer physics (e.g., Embury et al., 2012a), and a turbulence-model-
based adjustment to the 20 cm depth SST at a standardized time of day. The adjusted SST estimate is
used as input to the L4 SST analysis. This means that the L4 SST analysis can be treated as
independent of in situ data, and useful as a comparison point for the many SST products that are tuned
to and/or incorporate in situ data. The standardization of the adjustment with respect to time of day is
intended to reduce aliasing of the diurnal cycle into false long-term trends, as satellite overpass times
vary (Embury et al., 2012b). All SSTs are provided with estimates of total uncertainty, and L4 SST
analysis product includes an operationally produced estimate of sea ice concentration (Good and
Rayner, 2014).

Merchant et al. (2014a,b) provide an assessment of the accuracy of this product by comparing more
than 2.4 million buoys from different observational networks. A global median difference against
drifting buoys of +0.05 K is observed, with a standard deviation (including the ~0.2 K uncertainty in
the drifting buoy measurements) of 0.28 K. The comparison with Argo measurements at ~ 5 m depth
(only from the latter part of the record) gives +0.04 K and 0.26 K respectively. Systematic regional
errors on space scales of ~1000 km range from -0.5 K to +0.5 K, with positive bias of +0.09 K across
equatorial regions overall (relative to measurements of the global tropical moored buoy array).
Regions persistently affected by mineral atmospheric aerosol, particularly Saharan dust, appear
negatively biased.

4.8 Greenhouse gases

The ESA CCI GHG Level 3 (i.e. gridded) data products implemented into the ESMValTool have been
specifically created for comparisons with climate model output and are available from obs4MIPs via
the Earth System Grid Federation (ESGF) alongside CMIP output in the same format as the CMIP
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model output. A detailed description of the underlying Level 2 data is available in Buchwitz et al.
(2015) and Buchwitz et al. (in preparation).

4.8.1 Column-average dry-air mole fraction carbon dioxide (XCO2)

The ESA CCI GHG XCO2 product is retrieved from measurements of the two satellite instruments
SCIAMACHY/ENVISAT (Bovensmann et al., 1999; Burrows et al., 1995) and TANSO-FTS/GOSAT
(Kuze et al., 2009). XCO?2 is a dimensionless quantity (unit: mol/mol) defined as the vertical column
of CO, divided by the vertical column of dry air (i.e., all air molecules except water vapor). Details
can be found in Buchwitz et al. (2005).

XCO2 is retrieved from radiance spectra in the near-infrared/short-wave infrared (NIR/SWIR) spectral
range using (mostly) Optimal Estimation (Rodgers, 2000) retrieval algorithms. For details we refer to
the Algorithm Theoretical Baseline Documents (ATBDs) available from the GHG-CCI website for
each individual Level 2 data product. Note that a resolution of 5°x5° has been selected (instead of, e.g.,
1°x1°) to ensure better noise suppression (note that the underlying individual satellite retrievals are
sparse and thus noisy due to very strict quality filtering).

The Level 2 input data used to create the obs4MIPS Level 3 product are all part of the GHG-CCI
CRDP3 dataset and are described in Buchwitz et al. (in preparation). From the individual
sensor/algorithm Level 2 (L2) XCO2 input data the Level 3 (L3) obs4MIPs product has been
generated as follows: to correct for the use of different CO, a priori assumptions in the independently
retrieved products, all products have been brought to a common a priori using the Simple Empirical
CO; Model (SECM) described in Reuter et al. (2012). After this a gridded L3 product is generated
from each L2 product by averaging all soundings onto a 5°x5° monthly grid. Only those grid cells are
further considered having a standard error smaller than 2 ppm. The grid cell uncertainty is computed
from the reported L2 uncertainties and a term accounting for potential regional / temporal biases. To
avoid potential discontinuities in the obs4MIPs time series, each L3 product has been offset corrected
in the overlap period using the mean of the products as reference (conserving the mean value). The
offset corrections are typically small and range between -0.4 ppm and +0.6 ppm. The obs4MIPs XCO2
value in a given grid cell is computed as the mean of the individual L3 values and the corresponding
total uncertainty is the root-mean-square of the individual L3 uncertainties. Finally a filtering
procedure has been applied to remove “unreliable” grid cells considering the overall noise error (1.6
ppm) and total uncertainty (1.8 ppm) of each cell.

An XCO2 uncertainty value (XCO2_stderr) is contained in the obs4MIPs file for each grid cell with
valid data (XCO2 nobs > 0). Note that prior to mid-2009 the obs4MIPs product is limited to
observations over land due to the solely availability of SCITAMACHY data (GOSAT ocean sun-glint
mode observations are only available after mid 2009).

4.8.2 Considerations for model-observation comparisons

A solid comparison between models and the ESA CCI XCO2 product requires sampling the model
output at the exact times and location of the satellite observations as well as taking into account the
altitude dependent sensitivity of the satellite retrieval. The satellite retrieval is limited to clear sky
observations around local noon which also needs to be considered when comparing satellite data with
model output. The altitude sensitivity can be considered by applying the satellite averaging kernel to
the models’ vertical profiles. In this case, all available Level 2 (i.e., individual observations) data
products should be used. Note that the XCO2 Level 2 product used for the described obs4MIPs
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product are the ones from GHG-CCI and that the other products (from NIES and NASA) have been
generated using different algorithms.

Due to the gridding / averaging process applied to generate obs4MIPs product, detailed time/location
information is not available in the obs4MIPs data product and also averaging kernel is not (yet) part of
this product. Typically, however, the satellite XCO2 averaging kernel is close to unity. This is
especially the case in the lower troposphere, where the CO, variability is typically largest. Therefore
applying the averaging kernel typically changes the XCO2 values by less than 1 ppmv (Dils et al.,
2014). However, how large this “correction” is depends also on the difference between the respective a
priori GHG profile (i.e., CO,) used for satellite retrieval and the respective model GHG profile. The
larger this difference, the larger the averaging kernel correction. If the model profiles are “reasonable”
other error sources are likely more relevant for using the obs4MIPs product such as the
representativity error.

Another source of uncertainty is the spatial and temporal representativeness of the measurements. A
representativity error originates from the fact that the “true” respective GHG field is variable within a
given month in a given grid cell but the obs4MIPs values are derived from averaging sparse satellite
observations, i.e., are not representative for the “true” monthly mean value of a given grid cell. Note
that the agreement with ground-based observations (not considering averaging kernels) for CO, is
typically within 0.29 +/- 1.2 ppm (1-sigma). These differences therefore include to some extent the
representativity error as well as other error sources (e.g., the uncertainty of the reference observations,
which is 0.4 ppm (1-sigma) for CO,. It is recommended to use the reported overall uncertainty range
of 0.29 +/- 1.2 ppm (l-sigma) and/or the reported uncertainties for each grid cell as given in the
obs4MIPs product file. It can therefore be expected that model minus satellite differences of larger
than approximately 2-3 ppmv point to significant differences between the modeled and observed GHG
values (differences are significant at the 5% significance level if outside of the 2-sigma (95%)
uncertainty range of [-2.1 ppm, 2.7 ppm]).

Note, however, that the obs4MIPs product is new and that not all possible assessments have been
carried out yet. The product has been generated by merging an ensemble of underlying Level 2
products. No obvious issues have been identified so far but it cannot be excluded that there are
potential issues (depending on data usage / application) introduced by merging the different datasets.
For example, the number of observations drops at the beginning of 2012 due to the loss of data from
SCIAMACHY/ENVISAT. Another important point to keep in mind when comparing climatological
XCO2 values over the ocean to model output is that data are only available for the second half of the
ESA CCI record. Averaging over the whole ESA CCI period will therefore result in an overestimation
of XCO2 over the ocean. Note also that the satellite observations are obtained around local noon
(around 10:00 a.m. local time for SCIAMACHY/ENVISAT and around 1:00 p.m. local time for
TANSO-FTS/GOSAT).

5 Examples of using ESA CCI datasets with the
ESMValTool

The implementation of the ESA CCI datasets aerosol, cloud, sea ice, soil moisture, sea surface
temperature, ozone greenhouse gases, and land cover were the first of the ESA CCI datasets to be
implemented within the ESMValTool. Work in the remaining time of CMUG will focus on further
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scientific interpretation of the results above and on the integration of additional diagnostics and
updates of the ESA CCI datasets as outlined in the proposal.

Figure 2 and
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Figure 3: caption next page.

Figure 4 are shown exemplary to summarize the main results from Lauer et al. (in preparation). For a
more detailed scientific interpretation of the results for the individual CCls, we refer to Lauer et al. (in
preparation).

In order to demonstrate the evaluation of ESMs with the ESA CCI data implemented into the
ESMValTool, we use the output from 50 models from the CMIP5 (Taylor et al. 2012). The model data
were obtained from the World Climate Research Programme’s (WRCP) CMIP5 data archive made
available through the Earth System Grid Federation (ESGF). Here, we analyze results of CMIP5
models from the “historical” model runs - twentieth-century simulations for 1850-2005 conducted with
the best record of natural and anthropogenic climate forcing. In order to extend the model runs beyond
the year 2005, we use results from simulations forced under the Representative Concentration
Pathways 4.5 for the years 2006-2013 (Clarke et al., 2007; Smith and Wigley, 2006; Wise et al., 2009).
An assessment of the agreement of simulated climatological mean state and seasonal cycle for key
variables such as ECVs (GCOS, 2010; Bojinski et al., 2014) with observations is commonly seen as a
reasonable starting point for the evaluation of ESMs (e.g., Gleckler et al., 2008; Flato et al., 2013;
Hagemann et al., 2013; Eyring et al., 2016b). Following Gleckler et al. (2008) and similar to Fig. 9.7
of Flato et al. (2013), we calculate the relative space-time RMSD of the climatological seasonal cycle
from CMIP5 simulations compared with observations for selected variables.

If there are multiple ensemble members available for any given model, we only consider the first
ensemble member “rlilpl” in our analysis. The only exception to this is the analysis of ozone, for
which we picked the ensemble members with interactive ozone chemistry as all “rlilpl” ensemble
members use pre-scribed ozone climatologies. All variables except for sea ice coverage (sic) are
averaged over the whole globe. Sea ice extent is averaged over the latitude band 60°N to 90°N (Arctic,
“NHpolar”) and 60°S to 90°S (Antarctic, “SHpolar”). The model results are compared to a reference
dataset and where data are available to an alternative observationally based dataset. For the models,
results are averaged over the years with observational data available.

Figure 2 provides a synoptic overview of the relative model quality compared with the multi-model
mean error. The figure provides a relative metric assessing whether a specific model performs better or
worse than the other models. The data have been normalized with the centered median and regridded
to the grid of the reference data using a bilinear interpolation method. As such it can be seen as a
starting point to investigate the reasons for differences between model and observations. Performance
varies across the models and variables, with some models comparing better with observations for one
variable and another model performing better for a different variable. The figure includes all variables
that have been shown in Flato et al. (2013) and adds variables for ESA CCI data, i.e., soil moisture
(sm), sea ice concentration (sic), total ozone columns (toz), aerosol optical depth (AOD) at 550 nm
from particles smaller than 1 um (od550ltlaer), absorption AOD at 550 nm (abs550aer), AOD at 870
nm (od870aer), AOD at 550 nm (od550aer), and sea surface temperature (ts). Except for global
average temperatures at 200 hPa (ta_Glob-200), aerosol optical depth of fine particles at 550 nm
(od5501tlaer Glob), and sea ice (sic. NHpolar, sic. SHpolar), the multi-model mean outperforms any
individual model.

For calculating the performance metrics for the four aerosol variables od550aer, od550Itlaer,

abs550aer, and 0d870aer shown in Figure 2 the ESA CCI dataset (lower triangles) and the MODIS
dataset (upper triangles) are used. Shown are only CMIP5 models with interactive aerosols, models
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using pre-scribed aerosol climatologies have not been taken into account. Even though most models
agree on the basic properties of the AOD distribution (od550aer), the relative spread among the
models for absorption AOD (abs550aer) and AOD of fine particles (d < 1 um, od550l1tlaer) is large. It
should be noted that the observational uncertainties for these quantities are also larger than for AOD at
550 nm.

For total cloud cover (clt), the choice of the reference dataset can make some difference for the
calculated performance of the individual models. A number of models such as, for instance, the
GFDL-CM3 and some of the HadGEM models compare worse against the ESA CCI dataset than
against the data from MODIS. The ESA CCI cloud data show slightly higher values (10-15%) for total
cloud cover in the subtropical stratocumulus regions off the west coasts of North and South America
as well as off the coast of Australia. In contrast, cloud amounts in the ESA CCI data are smaller over
the tropical Pacific with frequent deep convection (-10 to -20%). These are also regions in which the
models typically struggle to reproduce the observations. The average model bias compared with the
ESA CCI data is therefore larger than compared with the MODIS data. An exact quantitative
assessment, however, requires application of a satellite simulator in the models to take into account
satellite overpass times and lower cut-off thresholds, which is beyond the scope of this study. The
comparison of total cloud cover done here should therefore only be seen as a starting point for further
evaluation of the ESMs.

The performance metric of total column ozone with respect to the ESA CCI (lower triangle) and
NIWA (upper triangle) data is shown in Figure 2 only for models with interactive chemistry (CNRM-
CMS5, GFDL-CM3, GISS-E2-H, GISS-E2-R). The performance of the individual CMIP5 models for
total column ozone is quite similar with respect to both observational datasets. This is not surprising as
both reference datasets are based on the same satellite observations from GOME-2 and SCIAMACHY
(Bodeker et al., 2005; Loyola et al., 2009).Typical model biases include, for instance, an
overestimation of total ozone in high northern latitudes (> 60°N) throughout the year and an
underestimation of ozone in Antarctica during summer (November to January).

For sea ice extent (sic), the ESA CCI SI SSM/I and the National Snow and Ice Data Center NSIDC-
NT (Walsh et al., 2015) observations are used for comparison with the CMIP5 models. Figure 2 shows
that the choice of the reference dataset does not impact the results for the model performance in
reproducing the observed sea ice concentration significantly. This suggests that the two sea ice
datasets are in rather good agreement. Most CMIP5 models show a better performance in reproducing
observed sea ice concentration in the Antarctic (SH) than in the Arctic (NH, Figure 2).

The inter-model spread for soil moisture (sm) is large and most models tend to systematically over- or
underestimate soil moisture throughout the globe compared with the ESA CCI data. It should be noted,
however, that a quantitative comparison is difficult as the observations do not represent exactly the
same quantity as simulated by the models. Furthermore, the layer thickness considered is not
consistent among the models and the satellite observations (see also Lauer et al., in preparation).
Qualitatively, many models such as the FGOALS, GFDL, HadGEM, and MIROC models
overestimate the soil moisture particularly in higher latitudes in Asia, as well as Alaska and the
northern part of Canada.

Typical biases in the geographical distribution of the simulated SST include a warm bias in the

subtropical stratocumulus regions as well as a cold bias in the equatorial Pacific. Individual models
performing worse than the multi-model mean (Figure 2) include, for instance, the CSIRO, the
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FGOALS, and the MRI models. The reasons for this are rather different, for example the CSIRO
model shows a warm bias in the North Pacific whereas the FGOALS model shows a cold bias in the
North Atlantic.

A widely used way to summarize overall comparisons of annual mean properties with observations for
individual models are Taylor diagrams (Taylor, 2001). The Taylor diagrams shown in
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Figure 3: caption next page.

Figure 4 give the standard deviation and linear pattern correlation with observations of the total spatial
variability calculated from multi-year annual means. The standard deviations are normalized by the
observed values, so the observed climatology is represented in each panel by the filled black dots on
the x axis at x = 1. The pattern correlation is given in this polar-stereographic projection by the angular
coordinate. The linear distance between the observations and each model is proportional to the root-
mean-square error (RMSE) and can be estimated in multiples of the observed standard deviation with
the gray circles centered on the observational dots. The multi-model mean values have been calculated
over all models with data available (black star). Where available an alternative reference dataset is also
shown in Figure 2 (red star). The green circles show estimates of the observational uncertainties
(RMSE). The observational uncertainty estimates are provided by the ESA CCI teams and are part of
the ESA CCI datasets. The green circles show the multi-year global average uncertainties given as one
sigma of the total standard error normalized by the standard deviation of the observations. The RMSE
of a given model compared with the observations is therefore smaller than the 1-sigma uncertainty
estimate of the observations if the model lies within the green circle.

For total cloud cover, the model show a large spread in pattern correlation between 0.2 and 0.85. Most
model are/are not outside of the 1-sigma uncertainty estimate showing that the differences between the
models and the observations cannot be solely explained by measurement uncertainties. The integrated
aerosol properties aerosol optical depth (AOD) at 550 and 870 nm also show a large inter-model
spread. Because of the large observational uncertainties, most models lie within the green circle of the
1-sigma measurement uncertainty making quantitative assessments difficult. This is also supported by
the differences between the ESA CCI dataset and the MODIS data for AOD with the MODIS RMSE
being close to 1-sigma of the ESA CCI uncertainty estimate. The linear pattern correlation of most
models with the ESA CCI data, however, is smaller than that of the ESA CCI data and MODIS (0.8)
showing also differences in the geographical distribution of the simulated AOD. Soil moisture can
mostly be used for qualitative assessments of the models as the observational uncertainties are larger
than the RMSE of many of the individual models. The geographical annual mean patterns of the sea
surface temperatures from the models high correlation with the ESA CCI data ranging between 0.94
and 0.98. SST in the subtropical stratocumulus regions as well in the Southern Ocean is overestimated
by many models, though. Another typical model bias found in many simulations is an underestimation
of the SST in the equatorial Pacific. The correlation coefficients of the modeled total ozone columns
with the ESA CCI data are quite high with most models above 0.9 and a ratio of the modeled and the
observed spatial standard deviation being close to 1. All models are, however, outside of the 1-sigma
uncertainty estimate of the observations. Differences are found, for instance, in the northern high
latitudes where the models tend to underestimate the total ozone columns. For the column-averaged
CO, concentrations, the correlation coefficients of the results from the emission driven simulations
with the ESA CCI data are typically quite low and range between 0.2 and 0.6. This is partly caused by
the systematical overestimation of XCO2 concentrations by most CMIP5 models and partly by
differences in the geographical patterns such as, for example, in northern Europe or Southeast Asia
where the models show distinct local maxima that are not clearly visible in the ESA CCI data.
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Figure 2: Relative space-time root-mean square deviation (RMSD) calculated from the climatological
seasonal cycle of the CMIP5 simulations. The years averaged depend on the years with observational
data available and are summarized in Table 1. A relative performance is displayed, with blue shading
indicating better and red shading indicating worse performance than the median of all model results. A
diagonal split of a grid square shows the relative error with respect to the reference dataset (lower right
triangle) and the alternate dataset (upper left triangle). White boxes are used when data are not
available for the given model and variable or no alternate dataset has been used. ESA CCI data have
been used as reference data (lower right triangle) for the following variables: soil moisture (sm), sea
ice concentration (sic), total ozone columns (toz), aerosol optical depth (AOD) at 550 nm from
particles smaller than 1 um (0d550Itlaer), absorption AOD at 550 nm (abs550aer), AOD at 8§70 nm
(0d870aer), AOD at 550 nm (od550aer), and sea surface temperature (ts) (from: Lauer et al., in
preparation).
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Figure 4: Taylor diagrams showing the multi-year annual average performance of the CMIP5 models
in comparison with ESA CCI data for a) total cloud amount, b) aerosol optical depth at 550 nm, and c)
aerosol optical depth at 870 nm, d) soil moisture, €) sea surface temperature, f) total column ozone,
and g) column averaged CO, concentration. Panels a) to e¢) show CMIP5 historical simulations
(extended with RCP4.5), panel f) historical simulations with interactive ozone chemistry, and panel g)
emission driven historical simulations (extended with RCPS8.5). The multi-model mean values have
been calculated over all models with data available (black stars). Where available alternative reference
datasets are also shown (red stars). The green circles show estimates of the observational uncertainties
(RMSE) (from: Lauer et al., in preparation).

Code Availability

The enhanced version of the ESMValTool with a subset of the ESA CCI Phase 2 data described in this
report included is released under the Apache License, VERSION 2.0. This enhanced version and an
updated user’s guide will be available from the ESMValTool webpage at http://www.esmvaltool.org/
and from github (https://github.com/ESMValTool-Core/ESMValTool) in fall 2016. Users who apply
the Software resulting in presentations or papers are kindly asked to cite the ESMValTool
documentation paper (Eyring et al, 2016a) alongside with the Software doi
(doi:10.17874/ac8548f0315) and version number. The wider climate community is encouraged to
contribute to this effort and to join the ESMValTool development team for contribution of additional
more in-depth diagnostics for ESM evaluation.
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