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MIP Impact Assessment Report

1. Purpose and scope of this report

The purpose of this document is to describe thdityualevant outcomes from the research
of Work Packages 4.1, 4.2 and 04.2, entitled “Eitiplg CCIl products in CMIP like
experiments” after three years of activity withietCMUG Phase 2 project.

The activity of this work package consists in assegthe impact of using CClI data records
as surface boundary fields for AMIP simulationseiablish a test case that illustrates the
impact of CCI data records (SST and sea ice) onFANKe simulations (also called CCI4MIP
simulations). As part of the activity of this WoRackage, the same CCI data records were
also used as reference data sets for the evaluafidmgh resolution seasonal forecast
simulations. Some of the scientific questions asld originally in this work package are:

* Is there an added value on the representation ahmsemate and its variability, in
particular at higher latitudes, from the CCIl dagéh compared with AMIPII SST and
sea ice concentration (SIC) boundary conditions?

 Is this added value better identified in high retioh simulations of the atmospheric
model (with a resolution of about 50km comparediout 150km)?

* How do the prediction scores of high resolutionsseal forecast vary when using the
CCl SST and sea ice concentrations as reference skts compared to other
commonly used reference data sets ?

2. Methodology and approach

To assess the impact of using CCIl data recordsudace boundary fields for AMIP
simulations, a test case illustrating the impacCafi data records on AMIP simulations was
established. The required tasks consisted in:

1) Preparing and analysing boundary conditions fobg@@&MIP simulations using CCI-
data records (SST and sea ice concentration).

2) Performing CCI4AMIP simulations with the two diféat resolution versions of an
atmospheric climate model.

3) Quantifying and reporting the impact of using CGital sets on AMIP model
simulations.

SMHI contributed to this activity through the arsyof the CCI SIC v1 (see Section 3.1).
Météo-France/CNRM contributed to the activity thghuan assessment of CCI SIC v2 (see
Section 3.2) and CCI4MIP simulations using the aph@re general circulation model
ARPEGE-Climat as part of the CNRM-CM coupled ocatmosphere general circulation
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model (see Section 4). Simulations were done witlewa version of the model developed in
preparation to the CMIP6 simulations exercise. Twaxlel resolution were used consistently
with those used in CMIP6 : T127 (1.4°x1.4°) for tosvest (see Section 4.1) and T359
(0.5°x0.5°) for the highest (see Section 4.2).

Contrary to CMIP experiments, the overall objecidighis simulation exercise is not to first
compare different model performances, but to aeatile impact of using CCI data sets as
boundary conditions compared to using the clas#®éalP forcing (Taylor et al. 2015, also
described in Hurrel et al. 2008 and availabletfis://pcmdi.linl.gov/mips/amip/applied in a
coherent way. Some of the experiments were madardeie final CCl SIC data sets are
available and for a shorter period than the exgs@MIP5 AMIP boundary fields (several
decades). Being in between CMIP5 and CMIP6 intepanson exercises, Météo-France
used a model version that was not run for CMIPSweleer, the model versions (low and high
resolution ones) are close to the final one tossxldor CMIP6. This implies in particular that
new specific reference simulations with the cladsAMIP forcing had to be performed to
allow the comparison with the CCI4MIP simulations.

Another aim of these experiments was to demonstin@eractical use of CClI SST and Sea
Ice data and to prepare this data so it can reddilysed by other model groups. Since the
final CCIl data sets are now available, their usehis CCI4MIP exercise in one institute
demonstrates their applicability to other instisuter such a kind of modelling exercise.

As part of the evaluation of high resolution seadorecasts, the main task consisted in
evaluating the model climatology and seasonal &seskill when using either the CCl SST
as reference data sets or data sets that are ttynieed as ERA-Interim reanalysis (Dee et
al., 2011), the NOAA Extended Reconstructed SedaBarTemperature v3b (Smith et al.,
2007; hereafter referred to as ERSST) or the Ha8léey Surface data set (Rayner et al., 2003;
hereafter referred to as HadSST).

IC3/BSC validated against the CCI SST data sett afsvery high resolution (ORCAQ025L75
— T511L91) EC-Earth3 seasonal forecasts: 10-menmbedictions initialized every ®1
November and *l May from the GLORYS2v1 and ERA-Interim reanalysesl run for 4
months into the future. Due to the problems encenadtt with the version v1 of the CCI SIC
(see Section 3.1), only the CCI SST was used mdabsessment exercise.

The overall objective of this exercise was to eatduthe possible added-value on forecast
skill scores when using the CCI SST as a referdat® set compared to other commonly used
reference data sets (see Section 5.1). The infmman the uncertainty given with the CCI
products was also exploited in order to identifyatvlare the main sources of uncertainty in the
forecast skill scores (see Section 5.2).
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3. CCI Data analysis

3.1 Assessment of CCI SIC version v1

Within the context of the preparation of the CC4MIRulation exercise, SMHI performed an
analysis of the CCI data sets. The original CCI $t@duct (25 km EASE-grid) in its first
version (CCI SIC vl), the CCI SSTvl and OSTIA sea data (0.05 lon-lat grid) were
interpolated to a common regular 0.25x0.25 lorglad in order to compare the ice results,
investigate possible inconsistencies between thies€&ice product and the SST-product and
have them easy available as possible forcing ddta.common available period from 1992-
2008 was used. Furthermore, NOAA-OISST (at 0.25ekgrid) was used as comparison.
Figure 3.1 shows substantial differences betweenGRI sea ice concentration and the
NOAA-data. Generally, the ice extent in CCIl is demalin March. This is even more
pronounced in the Antarctic (not shown). Howevailydvariations of the differences are
large and an example from the record-low sea itengxn September 2007 shows smaller ice
extent in the CCI dataset (Figure 3.2)

ice conc Mar, NOAA, 1992-2008 ice conc Mar, ESA—CCI-SST — NOAA, 1992-2008

0.8
0.8
0.7
0.6
0.5

0.4

IU.J
0.2

2008

Figure 3.1: March sea ice concentration in the NGBISST sea ice data averaged over 1992-2008
(top left), difference between ice concentratiorCi@l and OSTIA (bottom left), difference between
OSTIA and NOAA (top right) and difference betwe€h &hd NOAA.
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ice conc 15. Sep 2007, NOAA ice conc 15 Sep 2007, ESA—CCI-SST — NOAA
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Figure 3.2 : As Figure 3.1 but for sea ice concatian at 15th September 2007.

Obviously, it is unclear which of the data setesre reliable but differences among different
ice data are large indicating large uncertaintreshie satellite data products. These results
confirm earlier results which found substantial ancentration differences between other
existing satellite derived sea ice data sets.

SMHI further compared CMIP5 sea ice concentratibtmssatellite data and found that
depending on the data set used, different conslasabout the performance of the models are
drawn. This makes evaluation and improvement ofiale models extremely challenging.

Analyses at SMHI of daily sea ice concentration Qfata showed the occurrence of
unrealistic sea ice concentrations far away from Alnctic or areas where sea ice could be
expected (Figure 3.3). Ice concentrations up to d8&tir in such regions. Using these data as
lower boundary forcing for AGCM-simulations will dd to huge unrealistic ocean to
atmosphere heat fluxes. It was thus considereditltiies not make sense to perform any
AGCM-simulations using the new CCI ice concentratimom the CCI SIC vl. It was thus
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decided to perform the first CCI4MIP simulationgést only the impact of the CCI-SST (see
Section 4.1) expecting a new version of the CCI &fbre performing a new test.

Figure 3.3: Example for occurrence of unrealistieasice concentrations in ESA-CCI ice
concentration data set (range of concentrationea £e from 0 to 5%).

3.2 Assessment of CCI SIC version v2

A second version of the CCI SIC dataset becamdadlaiin January 2017. An interaction
with the Sea Ice team allowed recovering the dathséore its public release in March.
According to the Sea Ice team, the problems eneoeatwith the CCIl SIC v1 were solved
through the application of a data filtering procéssproduce the main product of the L4
dataset (Sgrensen and T. Lavergne, 2017). The tidbles were produced at two different
resolutions (25km and 50km) but only the highemh&son filtered variable was used at
Météo-France for one CCI4MIP simulation (see Sec#b2). The choice of the higher
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resolution was guided by the fact that the versibthe Arpege-climat model used for this
simulation (T359 model version) has a grid cellesmmuch lower than 50km at higher
latitudes.

As part of the CCI data analysis, the CCI SIC viasget was compared to the classical AMIP
sea ice dataset. This comparison was performeddlysing the difference between CCI SIC
and AMIP SIC averaged for January and October thewhole CCI4MIP simulation period
(2003-2010) and on the model grid (Figure 3.4). el SIC shows generally weaker
concentrations than SIC AMIP in Northern Hemisphaseshown for January and October
(top figures). This is mainly the case over the gmaal ice zone were the differences may
reach about 10%. Even if one part of the explanatight be that the filtering may remove
some true ice coverage (Sgrensen and T. LaverddE]) 2his appears to be the main
difference between the two products.
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Figure 3.4: Sea ice concentration (SIC) differermmween the CCI4MIP and AMIP (T359 model
version) simulations for the climatology averagee@2003-2010 of January (top left) and October
(top right); SST difference between the CCI4MIP aidIP (T359 model version) in October.
(bottom).

For October, we have also reproduced in Figurett®edSST mean differences between CCI
and AMIP (bottom Figure). In the Antarctic margineé zone this is unexpected since lower
SIC in this zone should result in higher temperdurThis could be explained by the
definition of sea ice concentration in the SST @@iduct that differs from SIC CCl as it is

sourced on Norwegian Met Office’'s OSISAF produdt#ef(chant and Spink, 2013). This

needs further investigation.
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4. Impact in AMIP simulations

4.1 Assessment of the impact of CCI SST

Due to the delay in the sea ice data delivery fsegious Section), the first AGCM AMIP-
like simulations were performed in order to asskesmpact of the CCI SST only.

At Météo-France (CNRM) two 5-member ensembles wiusations were performed with a
new version of the Arpege-Climat model. The modeision has been chosen as close as
possible to the atmospheric component of the CNRWe&Bupled model that will be used for
the CMIP6 international simulation exercise. Itlutes a new physical package compared to
the CNRM-CM5 atmospheric component used for CMIVBIdoire et al., 2013), but this
version needs further parameter adjustments coifnorg its evaluation in a full coupled
mode. The resolution here chosen corresponds ttwest of the two resolutions that have
been selected by CNRM and CERFACS for their CMIP@utations. It consists in a T127
spectral truncation (about 1.4° in latitude andjitude) with 91 vertical levels.

The first ensemble (hereafter referred to as AMIB¥ performed using the SST and Sea ice
extent currently used by climate scientists to grenfthe AMIP simulations. The SST is thus
the one provided by Taylor et al. (2015). In theosel ensemble of simulations (hereafter
referred to as CCI4MIP), this SST was replacedhigy@Cl SST interpolated on the model
grid and averages at the monthly time scale ineagest with the “standard” AMIP forcing.
The Sea Ice extent dataset used to constrain tldelmemains the same than the “standard”
dataset used for the AMIP simulations. To accoonttlie longest period covered with the
CCl dataset (L4, v1.0), the common analysis peexaénds from 1992 to 2010.
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Figure 4.1: Sea level pressure in December-Jantd@algruary averaged over the 1992-2010 period
(in hPa) : ERA-Interim climatology (top left), difence between one member of the AMIP ensemble
and Era-Interim (top right), difference between anember of the AMIP ensemble and ERA-Interim
(bottom left), difference between the two chosemimes of the CCI4MIP and AMIP ensembles of
simulations (bottom right).

The difference between the two ensembles is ittt in Figure 4.1 showing the model
biases compared to ERA-Interim climatology for thean sea-level pressure in Northern
hemisphere winter (DJF) for the 1992-2010 perioc kéve here selected one member in
each of the 5-member ensembles. The model biasesdigintly degraded when using the CCI
forcing rather than the AMIP forcing, since the tranean square difference between the
model and the climatology increases from 2.22 ltP2.48 hPa. This degradation comes in
particular from an accentuation of the negativesguee biases over North-Eastern Atlantic
and Western Europe that leads to a too zonal aitionl in this region.

In this analysis we found a special case that gusti2006 (Figure 4.2) showing a slight SST
difference of about 0.2 K. This difference has gnsicant (at 5% level) impact on the
precipitation (within about 10%) over Western TiagdiPacific according to a student’s t_test.
This region is known to have large climate senigjtito SST changes trough the convection
intensification over warmer waters.

For a better understanding of the precipitationiatem related to the SST changes the
differences are computed also for the climatologgraged over the simulation period and the
5-member ensembles for the months of January amg (Figure 4.3) for SST and

precipitation. In January as in July the CCI SSa few tenths of a degree higher than AMIP
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SST over inter-tropical regions and colder at naitklides. The intertropical pattern of change
is correlated with a corresponding pattern of pa&iion change with higher precipitation
particularly over the Warm Pool region (Figure b left and bottom left). This finding is in
agreement with the results of Palmer and Mansf{@#B4) and the more recent results of
Barsugli and Sardeshmukh (2002) about the impattteo5SST changes on the precipitation in
Western Tropical Pacific. In this last study, tlstiraated local precipitation sensitivity to SST
change of about 0.5 mm daik™ over Western Tropical Pacific is consistent withr tinding

of a precipitation change of about 1 mm dagsociated to a SST change of about 0.2 K.
Colder temperatures over the Indian Ocean might bés linked to the specific pattern of
precipitation change of the Indian monsoon (loweerothe western coast of India and
enhanced over the inland regions of the country).

180 150W 120W 90W 60W  30W 0 30E 60E 90E 120E 150E 18 180 150W 120W 90W GOW  30W 0 30E 60E 90E  120E 150E 180

02 01 005 0 005 0.1 0.2 » o . Figur
e 4.2: SST (left) and precipitation (right) diffaces (respectively in K and mm dhpetween the
CCI4MIP and AMIP (T127model version) ensembledrobigtions in August 2006, calculated as an
average over the 5-members of each ensemble. Rotexts correspond to regions where the 5% level
of significance is over-passed in the applicatiba student t-test.
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Figure 4.3 : SST (left) and precipitation (rightffdrences (resbectively in K and mm dppetween
the CCI4MIP and AMIP (T127) ensembles for the dotoay of January (top) and of July (bottom),
calculated as an average over the 5-members of easbmble.
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4.2 Assessment of the impact of CCI SIC

Additionally a CCI4MIP one member simulation was mith the higher resolution version of
Arpege-Climat (T359 or about 0.5°, close to thdt e used for CMIP6) using the CCI SST
(L4 v1.1; monthly means) and the CCI SIC (L4 fiédrv2.0; monthly means at 25km)
boundary conditions over the common period 2003326fL the two forcing datasets. The
simulation was compared with a control AMIP simigdatperformed with the same model
version over the same period.

We have reported in Figure 4.4 differences betwbherCCI4MIP and AMIP simulations and,
for the sake of comparison, those obtained witly onle member of the CCI4MIP and AMIP
ensembles of simulations performed with the lowesolution of the model (T127) and
presented in the previous Section.

The SST patterns of differences between CCl andFAMIeraged over the 2003-2010 period
are very similar for the two model versions in J(fiygure 4.4, left), even if it is of course

smoother with the T127 model version. This is aleafirmed for all the monthly averages.

This occurs in spite of the fact that the two vemsi of the climate model were forced with

different versions of the CCI SST (v1.0 and v1Byt according to the CCI SST team, only
“intermittent bugs in the externally sourced seafields (with corresponding implications for

high latitude SST) have been corrected” with littlgact and only at the higher latitudes. The
common pattern of change exhibits some persistaatl Scale structure (also persistent from
month to month) that could be related to the irdkpon process (“Gibbs effect”).

Regarding the precipitation differences (Figure, 4ight), they are a little bit more

pronounced. However, the locations of these diffees are very similar in the two versions
in spite of some differences in some details tbatadbe related to climate internal variability.
The forced response is the same in the two sinomisitwith the previously mentioned local
response of precipitations over the Warm Pool regiad an impact on the summer monsoon.
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Figure 4.4: SST (left) and precipitation (right)fférences (respectively in K and mm dapetween
the CCI4MIP and AMIP simulations for the climatojogf July averaged over 2003-2010 for one
member simulation of the T127 model version (toyl) far the T359 model version (bottom).

We have reproduced in Figure 4.5 the Z500 hPardiifees between the CCI4MIP and the
AMIP simulations using the T359 model version amdraged in January over the 2003-2010
period. The pattern is characterized by an increéslee geopotential over the northern polar
region accompanied with a decrease in differentegoof the surrounding latitudes. This
pattern is consistent with a teleconnexion with whesstern tropical Pacific region consisting
in the propagation of stationary Rossby Waves fitbe warmed western tropical Pacific
(Palmer and Mansfield 1984). The same kind of teleexion can be inferred from a study of
the winter atmospheric response to different pastef SSTs (Révelard 2017). We thus argue
that the atmospheric response is not here thetre$ulhe small differences in sea ice
concentration between the CCI4MIP and AMIP simoladi presented in Figure 3.4 (top left).
We also investigated other climate variables inuday and found in particular a warmer
northern polar region and colder high latitude hem hemisphere continental regions in
consistency with higher sea level pressure. Hese, ale can argue that the main part of the
differences comes from the teleconnection withttbpical region. A complete demonstration
would however require further investigation.
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Figure 4.5: Z500 differences (in m) between the4B@GP and AMIP simulations for the climatology
of January averaged over 2003-2010 and for the TB68el version.

5. Impact in seasonal forecast simulations

5.1 Assessment of forecast skill using CCl and other SST datasets

IC3/BSC has performed a first set of seasonal &stesimulations with the EC-Earth v3.1
model starting in May and November for four morfihrsthe hindcast period 1993 until 2009.
The model is run at highest model resolution T510BR.25 corresponding to approximately
40 km in the atmosphere and 25 km over the ocean.

Some evaluations of the model simulations have ligare using either the CCI SST as a
reference data set or other commonly used referdatzesets. The comparisons shown here
are focused on the ENSO prediction skill and th& &8natology.

ENSO prediction skill:

The correlations between observed and forecastd@d Starting in May, averaged over the

Nifilo 3.4 region and the 1993-2009 period, are medoin Figure 5.1. The correlations are
shown for four different reference data sets, ERA-Interim, ERSST, HadlSST and CCI.
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Correlation coefficients differ substantially beemethe different observations and CClI is
within the spread of different observations. Mostable difference to other data sets occurs
in May, where all other data sets agree strongly.

EC-Earth3 prediction skill Nino3.4 SST

Q.
o]
€ ©
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3 =
o (=]
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—— ERSST
£ 4 — HadSST
Signficant correlation

T T | |
May June July August

Figure 5.1: Correlations between observed and fagtSSTs starting in May, averaged over the Nifio
3.4 region and the 1993-2009 period.

Climatological SST

Summer Sea-surface temperatures (SST) bias fdioteeasts averaged over the 1993-2009
period and using the native model resolution, am@ws in Figure 5.2. The reference data set
is the CCI SST product. Validation at a resolutadr0.25° is so far only possible with this
data set. Comparison to other data sets reveagsyasimilar pattern of SST biases (bottom
row, left ERA-Interim and right HadISST) with lagedifferences over the North Pacific.
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Figure 5.2: Summer Sea Surface Temperatures (S8as)for the EC-Earth seasonal forecasts
starting the ' of May and averaged over the period 1993-2009. rEference data sets are the CCl
SST (top), ERSST (bottom left) and HadSST (botgt).r

New sets of high-resolution seasonal predictiomtasts with 25 km in the ocean and 40 km
in the atmosphere have been then verified agaiofipie sets of observational references to
understand how the forecast skill varies with theice of reference data. The hindcasts cover
the period of 1993 to 2009 predicting summer (JAJ (DJF) respectively by initializing ten
ensemble members on the 1st of May and NovembereXperiments have been carried out
with the coupled Earth system model EC-Earth 3.az@leger et al.,, 2010) using for the
initialization of the ocean component Glorys2vlr(feet al., 2010), ERA-Interim for the
atmosphere (Dee et al., 2011), ERA-Land (Balsana. e2015) for the land-surface and sea-
ice initial conditions from Guemas et al.(2014).

The analysis focused in evaluating prediction skidasured by the ensemble mean temporal
correlation of seasonal mean sea-surface temperé@®8T) and sea-ice extent (SIE) using
different observational datasets. Such an analgars only be carried out with climate
prediction experiments as non-initialized modeggrations will not represent the same inter-
annual variability as the one observed and atmospbrdy AMIP experiments are
specifically forced by SST and SIE and hence doatiotv for an independent evaluation of
the observational references. The correlationyaisablises different sets of observations. For
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SST we have used the products: CCI analysed Wedchant et al., 2014), HadISST v.1.1
(Rayner et al., 2003), ERA-Interim (Dee et al., POIERSST v.3b (Xue et al., 2003) and
ERSST v.4 (Liu et al., 2014). For sea-ice exter@t SSM/I (lvanova et al., 2014), HadISST
v.1.1 (Rayner et al., 2003), OSI-SAF (Eastwoodle811), COBE2 (Hirahara et al., 2014),

NSIDC (Fetterer et al., 2016).

Seasonal forecasts of summer Nifio 3.4 SST

Seasonal forecasts of summer Arctic SIE

(T T (+0.05) ESA
(T8 (+0.04) ERAint
[Tl (+0.03) HadISST

[T I (+0.02) OSISAF_SIE
I (+0.02) ESA SIE
[ Il (+-0.12) HADISST_SIE

[ (+0.01) ERSST4 [T (+0.01) NSIDC_SIE

| (+0) ERSST [l (+0) COBE2_SIE
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Number of forecasts with highest correlation Number of forecasts with highest correlation

Figure 5.3: Numbers of forecasts with highest clatien when using different observations for Nifio
3.4 SST or Arctic SIE using experiments and obsiens summarized in section 2a and b,
respectively. Each bar is divided into the numifezaunts for each forecast lead-time (May - August)
and brackets denote the average correlation ineahge to a different dataset. ESA CCl and for OSI-
SAF for SIE stand out as the observations providysiematically higher correlation skill.

As reported above the correlation skill of the E&tBk high-resolution hindcast is
systematically higher with ESA CCI for SSTs oves tH Nifio Southern Oscillation (ENSO)
region Nifio3.4 compared to other products. Theyasimhas therefore been extended to gain
confidence of the result using an additional sebfoflimate model prediction systems from
the North American Multi-Model Ensemble
(http://www.cpc.ncep.noaa.gov/products/NMNIHbr the same period and prediction of
seasons but with varying resolution (all other mMied@ve a lower resolution). The Figure 5.3
shows a synthesis of the correlation skill acrogierént products for SST and SIE by
counting the number of times a single ensemble neemdaches the highest correlation with
one of the five products. The figure shows that $8T ESA CCI and for SIE OSI-SAF
provide systematically higher correlation skill evié considering multiple models. The result
has further been found to be very unlikely random.

Since the result is particularly striking for SSThas been extended spatially to assess its
robustness beyond the Nifio 3.4 region. Figure Bofvs the equivalent analysis of Figure 5.1
but depicting at each grid-point only the observadi leading to the highest correlation (the
observations with the longest bar in figure 5.3)eTigure shows that the result is spatially
inhomogeneous but that on average (33% of gridtgpiBSA-CCI provides the highest
correlation also when considering the global oce&egions of intense ship traffic as the
North Atlantic and North Pacific indicate thatiservations relying on in-situ measurements might

be more accurate in these regions. The resultsnareview in Science Reports under the title
“Utilizing climate models to estimate the qualitygdobal observational data sets”.
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Observation leading to highest carrelation in August
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Figure 5.4: Spatial distribution of observationaference quality. For each grid point, we displag t
observational reference that correlates best withstrof the forecasts. We show data only in grid
points where at least one forecast achieves afégnit correlation with one observational reference
The black box is the Nifio3.4 region. Regions ald?& or below 70°S are not considered, as these
regions are usually ice-covered. The percentagdswbéhe color bar indicate the fraction of the
oceans covered by each color.

5.2 Assessment of forecast skill using observational uncertainties

At BSC, seasonal forecast verification practice Hseen enhanced to account for
observational uncertainties provided by the CClsedace temperature (SST) data. More
specifically, the uncertainty provided by CCI SSTtcompared to the uncertainty derived from
alternative observational references (ORs) of S&i® to other sources of uncertainty in
verification in order to assess its relevance. Fadu5 shows the correlation skill of Nifio3.4
SSTs for predictions initialized in May predictitige consecutive four months (May-August).
The correlation skill is accompanied with the utaieties in the correlation skill shown as
coloured areas around the sample estimate (dasted The uncertainty is decomposed into
the observational uncertainty, the uncertaintyinaging from a limited ensemble size and the
uncertainty from verifying the predictions for anited period, constrained by the length of
the CCI SST record (1992 - 2010). This analysiks tes two things: (1) the observational
uncertainty can be an important source of uncedstafor the verification of seasonal
predictions and current practice which does nobaet for these uncertainties should be
revisited (2) the verification uncertainty is domied by the length of CCI SST record;
increasing the length of the record might henca&icedhe uncertainty in model-observation
comparison more than efforts devoted to reducersasenal uncertainties.
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Figure 5.5: Sub-seasonal to seasonal forecast skiECMWF S4 (10 members) with respect to SST
CCI (dashed line). The areas show the 5-95% peileerange of the bootstrapped (L8amples)
uncertainty sources around the sample correlatiitl $or (a) the uncertainty in the observations
assessed using the SST CCI propagated uncertamt¥q00 km and t= 10 days) and the ensemble of
different ORs and for (b) the sample uncertaintg tiua limited ensemble size and record length of
the SST CCI dataset. The grey area shows theuotartainty obtained by resampling all sources at
the same time

Observational uncertainties do not only increase timcertainty in the forecast quality
assessment of seasonal predictions but also systaftyaimpact the skill. Noise in the
observations decrease the correlation skill (Massbret al., 2016) and observational
uncertainties lead therefore to an underestimatibrthe deterministic prediction skill of
seasonal predictions. Figure 5.6 shows an estiofdtew much skill is lost in seasonal SST
predictions due to the uncertainties in the CCI $&brd using the correction for attenuation
(Spearman 1904). The figure shows that correlatlath is underestimated by more than 0.2
in various areas, which is highly relevant giveattimprovements in prediction skill due to
improved model specifications is usually of a sanif not smaller magnitude (Prodhomme et
al., 2016).
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Lost skill due to observational uncertainty

Correlation
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Figure 5.6: Reductlon of correlation skill in ECMW84 due to the observational uncertainty for the

prediction of the month of August (initialized ist Iof May) estimated using the correction for
attenuation (Spearman 1904). The observational maicey is estimated by propagating SST CCI
uncertainties to monthly means in each grid-pof@tid-points in grey denote areas where the
observational uncertainty is larger than the interaal variability of the SST CCI and where as a
consequence no correction for attenuation can beutated.

6. Discussion and conclusion

As a conclusion of the CC4MIP simulations, the gsial of the 5 member ensembles of
simulations performed with T127 model version shawslight but significant impact SST
differences between the CCI and the AMIP datagatterences generally are not exceeding
0.1 to 0.2 K but the warmer temperature in the arastropical Pacific are sufficient to
explain a significant increase of convective priatpn in the same region (about 10% of
increase). Colder temperatures in the Indian Obeae also an impact on the summer Indian
monsoon. This is confirmed with the higher resaolnitsimulations that also exhibit in boreal
winter a circulation pattern at higher latitudeatthresembles to a well-known teleconnexion
with the western tropical Pacific. Conversely, wgue that the small differences in sea ice
concentration between CCI and AMIP, particularlgdted in the marginal ice zone, seem not
to have a significant impact on the simulated ctamia spite of the high resolution of the
analysed simulation. A complete demonstration wdwdever require further investigation
that could profit from similar CCI4MIP simulatioperformed with other atmospheric general
circulation models.
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Verification of seasonal climate prediction usingSA CCIl observations and other

observational datasets for the same variables Ieteat forecast varies systematically, and
robustly across multiple climate models, dependingwhich observational dataset is used.
For SST we find that ESA CCI yields on average linghest forecast correlation which

implies that the observational noise is smalleE®A CCI compared to other SST products.
The analysis presents a new paradigm of utiliziiipate model prediction to estimate the
quality of global observational data sets.

First results which make use of the CCI SST ungdggtain model-observation
intercomparison reveal a large research area wiashhardly been explored. Advancing our
practice to account uncertainties for both modeld abservations will likely impact our
future understanding of the level of state-of-thesasonal forecast skill but also climate
model capabilities in general.

During the course of the project a discussion betwW€MUG partners (in particular SMHI)
and CCl ice experts lead to the conclusion thaiuding all signals (maybe marking certain
areas as uncertain) but otherwise providing tha datthey are is not a good solution from the
climate modeller’s perspective. Satellite groupsusth contain more knowledge over the “real
world” sea ice conditions as modelling groups. Thugould be preferable if satellite groups
provide their best estimate of the sea ice conubtimmstead leaving modelling groups to
develop own algorithm to post-process the CCIl datanake them usable for modelling
activities. This would also lead to a large numbikedifferent “CCI"-like data sets. This was
put in application since the version 2 of the sEadoncentration data set provided by the sea
ice team includes both the raw variable that mdyleixsome unrealistic values and a filtered
variable but that might have the drawback of unstéreating the sea ice concentration in
marginal ice zones. This is this one that was uséage high resolution CCI4MIP simulation.

A more general point overcoming the specific contéxhe uncoupled AMIP simulations or
the relatively short term seasonal forecast sirmilatis that climate models show huge
variations over time. Ocean circulation featurde lthe AMOC and related ocean heat
transports can vary on multi-decadal time scalesadfect also sea ice on these time scales.
Since global climate models used in non-initializedipled simulations do not reproduce the
climate of certain years (e.g. year 2000) but amlglimate that is representative for the
external forcings (top of the atmosphere solar atamh, greenhouse gas concentrations,
aerosol concentrations,...) of this year, very loagadsets are needed to evaluated climate
models. In this context often 30 years are menddng this is the lower limit given the fact
that many ocean quantities vary on 50-80 year soades.
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