
CMUG Phase 2 Deliverable  
Reference:  D4.1: MIP Impact Assessment 
Due date:   30 June 2017 
Submission date:   30 June 2017 
Version:  3 
 

1 of 24 

 
 
 

Climate Modelling User Group 
 
 
Phase 2 Deliverable 4.1 Version 3 
 
 
MIP Impact Assessment 
 
 
 
Centres providing input:  SMHI, IC3/BSC, MétéoFrance 
 
 

 
 
 
 
 
 
 
  

Version nr.  Date Status 
0.6 06 May 16 Input from partners 
2.6 18 Jun 17 Additional contribution from CNRM and BSC and 

update of the whole document 
3.0 30 Jun 17 Submit to ESA 



CMUG Phase 2 Deliverable  
Reference:  D4.1: MIP Impact Assessment 
Due date:   30 June 2017 
Submission date:   30 June 2017 
Version:  3 
 

2 of 24 

 
CMUG Phase 2 Deliverable 4.1 
 
MIP Impact Assessment 
 
 
 
 
Table of Contents 
 

1. Purpose and scope of this report............................................................................................................. 3 

2. Methodology and approach .................................................................................................................... 3 

3. CCI Data analysis ..................................................................................................................................... 5 

3.1 Assessment of CCI SIC version v1 .......................................................................................................5 

3.2 Assessment of CCI SIC version v2 .......................................................................................................7 

4. Impact in AMIP simulations .................................................................................................................... 9 

4.1 Assessment of the impact of CCI SST .................................................................................................9 

4.2 Assessment of the impact of CCI SIC ................................................................................................12 

5. Impact in seasonal forecast simulations ................................................................................................ 14 

5.1 Assessment of forecast skill using CCI and other SST datasets ........................................................14 

5.2 Assessment of forecast skill using observational uncertainties .......................................................18 

6. Discussion and conclusion ..................................................................................................................... 20 

7. References ............................................................................................................................................ 22 

 
 



CMUG Phase 2 Deliverable  
Reference:  D4.1: MIP Impact Assessment 
Due date:   30 June 2017 
Submission date:   30 June 2017 
Version:  3 
 

3 of 24 

 
MIP Impact Assessment Report 

 
 

1. Purpose and scope of this report 
 
The purpose of this document is to describe the quality relevant outcomes from the research 
of Work Packages 4.1, 4.2 and O4.2, entitled “Exploiting CCI products in CMIP like 
experiments” after three years of activity within the CMUG Phase 2 project.  
 
The activity of this work package consists in assessing the impact of using CCI data records 
as surface boundary fields for AMIP simulations to establish a test case that illustrates the 
impact of CCI data records (SST and sea ice) on AMIP-like simulations (also called CCI4MIP 
simulations). As part of the activity of this Work Package, the same CCI data records were 
also used as reference data sets for the evaluation of high resolution seasonal forecast 
simulations. Some of the scientific questions addressed originally in this work package are: 
 

• Is there an added value on the representation of mean climate and its variability, in 
particular at higher latitudes, from the CCI data set compared with AMIPII SST and 
sea ice concentration (SIC) boundary conditions? 

• Is this added value better identified in high resolution simulations of the atmospheric 
model (with a resolution of about 50km compared to about 150km)? 

• How do the prediction scores of high resolution seasonal forecast vary when using the 
CCI SST and sea ice concentrations as reference data sets compared to other 
commonly used reference data sets ? 

 
 
 

2. Methodology and approach  
 
To assess the impact of using CCI data records as surface boundary fields for AMIP 
simulations, a test case illustrating the impact of CCI data records on AMIP simulations was 
established. The required tasks consisted in:  
 

1) Preparing and analysing boundary conditions for global AMIP simulations using CCI-
data records (SST and sea ice concentration).   

2) Performing CCI4AMIP simulations with  the two different resolution versions of an 
atmospheric climate model. 

3) Quantifying and reporting the impact of using CCI data sets on AMIP model 
simulations. 

 
SMHI contributed to this activity through the analysis of the CCI SIC v1 (see Section 3.1). 
Météo-France/CNRM contributed to the activity through an assessment of CCI SIC v2 (see 
Section 3.2) and CCI4MIP simulations using the atmosphere general circulation model 
ARPEGE-Climat as part of the CNRM-CM coupled ocean-atmosphere general circulation 
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model (see Section 4). Simulations were done with a new version of the model developed in 
preparation to the CMIP6 simulations exercise. Two model resolution were used consistently 
with those used in CMIP6 : T127 (1.4°x1.4°) for the lowest (see Section 4.1) and  T359 
(0.5°x0.5°) for the highest (see Section 4.2).  
 
Contrary to CMIP experiments, the overall objective of this simulation exercise is not to first 
compare different model performances, but to analyse the impact of using CCI data sets as 
boundary conditions compared to using the classical AMIP forcing (Taylor et al. 2015, also 
described in Hurrel et al. 2008 and available at https://pcmdi.llnl.gov/mips/amip/)  applied in a 
coherent way. Some of the experiments were made before the final CCI SIC data sets are 
available and for a shorter period than the existing CMIP5 AMIP boundary fields (several 
decades). Being in between CMIP5 and CMIP6 intercomparison exercises, Météo-France 
used a model version that was not run for CMIP5. However, the model versions (low and high 
resolution ones) are close to the final one to be used for CMIP6. This implies in particular that 
new specific reference simulations with the classical AMIP forcing had to be performed to 
allow the comparison with the CCI4MIP simulations.  
 
Another aim of these experiments was to demonstrate the practical use of CCI SST and Sea 
Ice data and to prepare this data so it can readily be used by other model groups. Since the 
final CCI data sets are now available, their use in this CCI4MIP exercise in one institute 
demonstrates their applicability to other institutes for such a kind of modelling exercise. 
 
As part of the evaluation of high resolution seasonal forecasts, the main task consisted in 
evaluating the model climatology and seasonal forecast skill when using either the CCI SST 
as reference data sets or data sets that are currently used as ERA-Interim reanalysis (Dee et 
al., 2011), the NOAA Extended Reconstructed Sea Surface Temperature v3b (Smith et al., 
2007; hereafter referred to as ERSST) or the Hadley Sea Surface data set (Rayner et al., 2003; 
hereafter referred to as HadSST). 
 
IC3/BSC validated against the CCI SST data set, a set of very high resolution (ORCA025L75 
– T511L91) EC-Earth3 seasonal forecasts: 10-member predictions initialized every 1st 
November and 1st May from the GLORYS2v1 and ERA-Interim reanalyses and run for 4 
months into the future. Due to the problems encountered with the version v1 of the CCI SIC 
(see Section 3.1), only the CCI SST was used in this assessment exercise.  
 
The overall objective of this exercise was to evaluate the possible added-value on forecast 
skill scores when using the CCI SST as a reference data set compared to other commonly used 
reference data sets (see Section 5.1). The information on the uncertainty given with the CCI 
products was also exploited in order to identify what are the main sources of uncertainty in the 
forecast skill scores (see Section 5.2).  
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3. CCI Data analysis 
 

3.1 Assessment of CCI SIC version v1  
 
Within the context of the preparation of the CC4MIP simulation exercise, SMHI performed an 
analysis of the CCI data sets. The original CCI SIC product (25 km EASE-grid) in its first 
version (CCI SIC v1), the CCI SSTv1 and OSTIA sea ice data (0.05 lon-lat grid) were 
interpolated to a common regular 0.25x0.25 lon-lat grid in order to compare the ice results, 
investigate possible inconsistencies between the CCI sea ice product and the SST-product and 
have them easy available as possible forcing data. The common available period from 1992-
2008 was used. Furthermore, NOAA-OISST (at 0.25 degree grid) was used as comparison. 
Figure 3.1 shows substantial differences between the CCI sea ice concentration and the 
NOAA-data. Generally, the ice extent in CCI is smaller in March. This is even more 
pronounced in the Antarctic (not shown). However, daily variations of the differences are 
large and an example from the record-low sea ice extent in September 2007 shows smaller ice 
extent in the CCI dataset (Figure 3.2) 

 
Figure 3.1: March sea ice concentration in the NOAA-OISST sea ice data averaged over 1992-2008 
(top left), difference between ice concentration in CCI and OSTIA (bottom left), difference between 
OSTIA and NOAA (top right) and difference between CCI and NOAA. 
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Figure 3.2 : As Figure 3.1 but for sea ice concentration at 15th September 2007. 
 
Obviously, it is unclear which of the data sets is more reliable but differences among different 
ice data are large indicating large uncertainties in the satellite data products. These results 
confirm earlier results which found substantial ice concentration differences between other 
existing satellite derived sea ice data sets. 
 
SMHI further compared CMIP5 sea ice concentrations to satellite data and found that 
depending on the data set used, different conclusions about the performance of the models are 
drawn. This makes evaluation and improvement of climate models extremely challenging. 
 
Analyses at SMHI of daily sea ice concentration CCI data showed the occurrence of 
unrealistic sea ice concentrations far away from the Arctic or areas where sea ice could be 
expected (Figure 3.3). Ice concentrations up to 15% occur in such regions. Using these data as 
lower boundary forcing for AGCM-simulations will lead to huge unrealistic ocean to 
atmosphere heat fluxes. It was thus considered that it does not make sense to perform any 
AGCM-simulations using the new CCI ice concentration from the CCI SIC v1. It was thus 
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decided to perform the first CCI4MIP simulations to test only the impact of the CCI-SST (see 
Section 4.1) expecting a new version of the CCI SIC before performing a new test.  
 

 
 
Figure 3.3: Example for occurrence of unrealistic sea ice concentrations in ESA-CCI ice 
concentration data set (range of concentration of sea ice from 0 to 5%). 
 

3.2 Assessment of CCI SIC version v2  
 
A second version of the CCI SIC dataset became available in January 2017. An interaction 
with the Sea Ice team allowed recovering the dataset before its public release in March. 
According to the Sea Ice team, the problems encountered with the CCI SIC v1 were solved 
through the application of a data filtering process to produce the main product of the L4 
dataset (Sørensen and T. Lavergne, 2017). The L4 variables were produced at two different 
resolutions (25km and 50km) but only the higher resolution filtered variable was used at 
Météo-France for one CCI4MIP simulation (see Section 4.2). The choice of the higher 
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resolution was guided by the fact that the version of the Arpege-climat model used for this 
simulation (T359 model version) has a grid cell size much lower than 50km at higher 
latitudes. 
 
As part of the CCI data analysis, the CCI SIC v2 dataset was compared to the classical AMIP 
sea ice dataset. This comparison was performed by analysing the difference between CCI SIC 
and AMIP SIC averaged for January and October over the whole CCI4MIP simulation period 
(2003-2010) and on the model grid (Figure 3.4). The CCI SIC shows generally weaker 
concentrations than SIC AMIP in Northern Hemisphere as shown for January and October 
(top figures). This is mainly the case over the marginal ice zone were the differences may 
reach about 10%. Even if one part of the explanation might be that the filtering may remove 
some true ice coverage (Sørensen and T. Lavergne, 2017) this appears to be the main 
difference between the two products.  
 

 
Figure 3.4: Sea ice concentration (SIC) difference between the CCI4MIP and AMIP (T359 model 
version) simulations for the climatology averaged over 2003-2010 of January (top left) and October 
(top right); SST difference between the CCI4MIP and AMIP (T359 model version) in October. 
(bottom). 
 
 
For October, we have also reproduced in Figure 3.4 the SST mean differences between CCI 
and AMIP (bottom Figure). In the Antarctic marginal ice zone this is unexpected since lower 
SIC in this zone should result in higher temperatures. This could be explained by the 
definition of sea ice concentration in the SST CCI product that differs from SIC CCI as it is 
sourced on Norwegian Met Office’s OSISAF products (Merchant and Spink, 2013). This 
needs further investigation. 
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4. Impact in AMIP simulations 
 

4.1 Assessment of the impact of CCI SST  
 
Due to the delay in the sea ice data delivery (see previous Section), the first AGCM AMIP-
like simulations were performed in order to assess the impact of the CCI SST only. 
 
At Météo-France (CNRM) two 5-member ensembles of simulations were performed with a 
new version of the Arpege-Climat model. The model version has been chosen as close as 
possible to the atmospheric component of the CNRM-CM coupled model that will be used for 
the CMIP6 international simulation exercise. It includes a new physical package compared to 
the CNRM-CM5 atmospheric component used for CMIP5 (Voldoire et al., 2013), but this 
version needs further parameter adjustments coming from its evaluation in a full coupled 
mode. The resolution here chosen corresponds to the lowest of the two resolutions that have 
been selected by CNRM and CERFACS for their CMIP6 simulations. It consists in a T127 
spectral truncation (about 1.4° in latitude and longitude) with 91 vertical levels.  
 
The first ensemble (hereafter referred to as AMIP) was performed using the SST and Sea ice 
extent currently used by climate scientists to perform the AMIP simulations. The SST is thus 
the one provided by Taylor et al. (2015). In the second ensemble of simulations (hereafter 
referred to as CCI4MIP), this SST was replaced by the CCI SST interpolated on the model 
grid and averages at the monthly time scale in agreement with the “standard” AMIP forcing. 
The Sea Ice extent dataset used to constrain the model remains the same than the “standard” 
dataset used for the AMIP simulations. To account for the longest period covered with the 
CCI dataset (L4, v1.0), the common analysis period extends from 1992 to 2010. 
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Figure 4.1: Sea level pressure in December-January-February averaged over the 1992-2010 period 
(in hPa) : ERA-Interim climatology (top left), difference between one member of the AMIP ensemble 
and Era-Interim (top right), difference between one member of the AMIP ensemble and ERA-Interim 
(bottom left), difference between the two chosen members of the CCI4MIP and AMIP ensembles of 
simulations (bottom right). 
 
The difference between the two ensembles is illustrated in Figure 4.1 showing the model 
biases compared to ERA-Interim climatology for the mean sea-level pressure in Northern 
hemisphere winter (DJF) for the 1992-2010 period. We have here selected one member in 
each of the 5-member ensembles. The model biases are slightly degraded when using the CCI 
forcing rather than the AMIP forcing, since the root mean square difference between the 
model and the climatology increases from 2.22 hPa to 2.48 hPa. This degradation comes in 
particular from an accentuation of the negative pressure biases over North-Eastern Atlantic 
and Western Europe that leads to a too zonal circulation in this region. 
 
In this analysis we found a special case that is August 2006 (Figure 4.2) showing a slight SST 
difference of about 0.2 K. This difference has a significant (at 5% level) impact on the 
precipitation (within about 10%) over Western Tropical Pacific according to a student’s t_test. 
This region is known to have large climate sensitivity to SST changes trough the convection 
intensification over warmer waters.  
 
For a better understanding of the precipitation variation related to the SST changes the 
differences are computed also for the climatology averaged over the simulation period and the 
5-member ensembles for the months of January and July (Figure 4.3) for SST and 
precipitation. In January as in July the CCI SST is a few tenths of a degree higher than AMIP 
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SST over inter-tropical regions and colder at mid-latitudes. The intertropical pattern of change 
is correlated with a corresponding pattern of precipitation change with higher precipitation 
particularly over the Warm Pool region (Figure 4.3 top left and bottom left). This finding is in 
agreement with the results of Palmer and Mansfield (1984) and the more recent results of 
Barsugli and Sardeshmukh (2002) about the impact of the SST changes on the precipitation in 
Western Tropical Pacific. In this last study, the estimated local precipitation sensitivity to SST 
change of about 0.5 mm day-1 K-1 over Western Tropical Pacific is consistent with our finding 
of a precipitation change of about 1 mm day-1 associated to a SST change of about 0.2 K. 
Colder temperatures over the Indian Ocean might also be linked to the specific pattern of 
precipitation change of the Indian monsoon (lower over the western coast of India and 
enhanced over the inland regions of the country).  

Figur
e 4.2: SST (left) and precipitation (right) differences (respectively in K and mm day-1) between the 
CCI4MIP and AMIP (T127model version) ensembles of simulations in August 2006, calculated as an 
average over the 5-members of each ensemble. Doted zones correspond to regions where the 5% level 
of significance is over-passed in the application of a student t-test. 

 
Figure 4.3 : SST (left) and precipitation (right) differences (respectively in K and mm day-1) between 
the CCI4MIP and AMIP (T127) ensembles for the climatology of January (top) and of July (bottom), 
calculated as an average over the 5-members of each ensemble. 
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4.2 Assessment of the impact of CCI SIC  
 
Additionally a CCI4MIP one member simulation was run with the higher resolution version of 
Arpege-Climat (T359 or about 0.5°, close to that will be used for CMIP6) using the CCI SST 
(L4 v1.1; monthly means) and the CCI SIC (L4 filtered v2.0; monthly means at 25km) 
boundary conditions over the common period 2003-2010 of the two forcing datasets. The 
simulation was compared with a control AMIP simulation performed with the same model 
version over the same period.  
 
We have reported in Figure 4.4 differences between the CCI4MIP and AMIP simulations and, 
for the sake of comparison, those obtained with only one member of the CCI4MIP and AMIP 
ensembles of simulations performed with the lower resolution of the model (T127) and 
presented in the previous Section.  
 
The SST patterns of differences between CCI and AMIP averaged over the 2003-2010 period 
are very similar for the two model versions in July (Figure 4.4, left), even if it is of course 
smoother with the T127 model version. This is also confirmed for all the monthly averages. 
This occurs in spite of the fact that the two versions of the climate model were forced with 
different versions of the CCI SST (v1.0 and v1.1). But according to the CCI SST team, only 
“intermittent bugs in the externally sourced sea ice fields (with corresponding implications for 
high latitude SST) have been corrected” with little impact and only at the higher latitudes. The 
common pattern of change exhibits some persistent small scale structure (also persistent from 
month to month) that could be related to the interpolation process (“Gibbs effect”).   
 
Regarding the precipitation differences (Figure 4.4, right), they are a little bit more 
pronounced. However, the locations of these differences are very similar in the two versions 
in spite of some differences in some details that could be related to climate internal variability. 
The forced response is the same in the two simulations with the previously mentioned local 
response of precipitations over the Warm Pool region and an impact on the summer monsoon.  
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Figure 4.4: SST (left) and precipitation (right) differences (respectively in K and mm day-1) between 
the CCI4MIP and AMIP simulations for the climatology of July averaged over 2003-2010 for one 
member simulation of the T127 model version (top) and for the T359 model version (bottom). 
 
We have reproduced in Figure 4.5 the Z500 hPa differences between the CCI4MIP and the 
AMIP simulations using the T359 model version and averaged in January over the 2003-2010 
period. The pattern is characterized by an increase of the geopotential over the northern polar 
region accompanied with a decrease in different zones of the surrounding latitudes. This 
pattern is consistent with a teleconnexion with the western tropical Pacific region consisting 
in the propagation of stationary Rossby Waves from the warmed western tropical Pacific 
(Palmer and Mansfield 1984). The same kind of teleconnexion can be inferred from a study of 
the winter atmospheric response to different patterns of SSTs (Révelard 2017). We thus argue 
that the atmospheric response is not here the result of the small differences in sea ice 
concentration between the CCI4MIP and AMIP simulations presented in Figure 3.4 (top left). 
We also investigated other climate variables in January and found in particular a warmer 
northern polar region and colder high latitude northern hemisphere continental regions in 
consistency with higher sea level pressure. Here also, we can argue that the main part of the 
differences comes from the teleconnection with the tropical region. A complete demonstration 
would however require further investigation. 
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Figure 4.5: Z500 differences (in m) between the CCI4MIP and AMIP simulations for the climatology 
of January averaged over 2003-2010 and for the T359 model version. 
 
 
 

5. Impact in seasonal forecast simulations 
 

5.1 Assessment of forecast skill using CCI and other SST datasets 
 
IC3/BSC has performed a first set of seasonal forecast simulations with the EC-Earth v3.1 
model starting in May and November for four months for the hindcast period 1993 until 2009. 
The model is run at highest model resolution T511ORCA0.25 corresponding to approximately 
40 km in the atmosphere and 25 km over the ocean.  
 
Some evaluations of the model simulations have been done using either the CCI SST as a 
reference data set or other commonly used reference data sets. The comparisons shown here 
are focused on the ENSO prediction skill and the SST climatology.  
 
ENSO prediction skill:  
 
The correlations between observed and forecasted SSTs starting in May, averaged over the 
Niño 3.4 region and the  1993-2009 period, are reported in Figure 5.1. The correlations are 
shown for four different reference data sets, i.e. ERA-Interim, ERSST, HadlSST and CCI. 
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Correlation coefficients differ substantially between the different observations and CCI is 
within the spread of different observations. Most notable difference to other data sets occurs 
in May, where all other data sets agree strongly. 
 

 
Figure 5.1: Correlations between observed and forecast SSTs starting in May, averaged over the Niño 
3.4 region and the  1993-2009 period. 
 
Climatological SST  
 
Summer Sea-surface temperatures (SST) bias for the forecasts averaged over the 1993-2009 
period and using the native model resolution, are shown in Figure 5.2. The reference data set 
is the CCI SST product. Validation at a resolution of 0.25° is so far only possible with this 
data set. Comparison to other data sets reveals a very similar pattern of SST biases (bottom 
row, left ERA-Interim and right HadlSST) with largest differences over the North Pacific. 
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Figure 5.2: Summer Sea Surface Temperatures (SSTs) bias for the EC-Earth seasonal forecasts 
starting the 1st of May and averaged over the period 1993-2009. The reference data sets are the CCI 
SST (top), ERSST (bottom left) and HadSST (bottom right). 
 
New sets of high-resolution seasonal prediction hindcasts with 25 km in the ocean and 40 km 
in the atmosphere have been then verified against multiple sets of observational references to 
understand how the forecast skill varies with the choice of reference data. The hindcasts cover 
the period of 1993 to 2009 predicting summer (JJA) and (DJF) respectively by initializing ten 
ensemble members on the 1st of May and November. The experiments have been carried out 
with the coupled Earth system model EC-Earth 3.1 (Hazeleger et al., 2010) using for the 
initialization of the ocean component Glorys2v1 (Ferry et al., 2010), ERA-Interim for the 
atmosphere (Dee et al., 2011), ERA-Land (Balsamo et al., 2015) for the land-surface and sea-
ice initial conditions from Guemas et al.(2014).  
 
The analysis focused in evaluating prediction skill measured by the ensemble mean temporal 
correlation of seasonal mean sea-surface temperature (SST) and sea-ice extent (SIE) using 
different observational datasets. Such an analysis can only be carried out with climate 
prediction experiments as non-initialized model integrations will not represent the same inter-
annual variability as the one observed and atmosphere-only AMIP experiments are 
specifically forced by SST and SIE and hence do not allow for an independent evaluation of 
the observational references.  The correlation analysis uses different sets of observations. For 
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SST we have used the products:  CCI analysed v1.0 (Merchant et al., 2014), HadISST v.1.1 
(Rayner et al., 2003), ERA-Interim (Dee et al., 2011), ERSST v.3b (Xue et al., 2003) and 
ERSST v.4 (Liu et al., 2014). For sea-ice extent: CCI SSM/I (Ivanova et al., 2014), HadISST 
v.1.1 (Rayner et al., 2003), OSI-SAF (Eastwood et al., 2011), COBE2 (Hirahara et al., 2014), 
NSIDC (Fetterer et al., 2016). 
 

 
Figure 5.3: Numbers of forecasts with highest correlation when using different observations for Niño 
3.4 SST or Arctic SIE using experiments and observations summarized in section 2a and b, 
respectively. Each bar is divided into the number of counts for each forecast lead-time (May - August) 
and brackets denote the average correlation increase due to a different dataset. ESA CCI and for OSI-
SAF for SIE stand out as the observations providing systematically higher correlation skill. 
 
As reported above the correlation skill of the EC-Earth high-resolution hindcast is 
systematically higher with ESA CCI for SSTs over the El Niño Southern Oscillation (ENSO) 
region Niño3.4 compared to other products. The analysis has therefore been extended to gain 
confidence of the result using an additional set of of climate model prediction systems from 
the North American Multi-Model Ensemble 
(http://www.cpc.ncep.noaa.gov/products/NMME/) for the same period and prediction of 
seasons but with varying resolution (all other models have a lower resolution). The Figure 5.3 
shows a synthesis of the correlation skill across different products for SST and SIE by 
counting the number of times a single ensemble member reaches the highest correlation with 
one of the five products. The figure shows that for SST ESA CCI and for SIE OSI-SAF 
provide systematically higher correlation skill even if considering multiple models. The result 
has further been found to be very unlikely random.  
 
Since the result is particularly striking for SST it has been extended spatially to assess its 
robustness beyond the Niño 3.4 region. Figure 5.4 shows the equivalent analysis of Figure 5.1 
but depicting at each grid-point only the observations leading to the highest correlation (the 
observations with the longest bar in figure 5.3). The figure shows that the result is spatially 
inhomogeneous but that on average (33% of grid points) ESA-CCI provides the highest 
correlation also when considering the global oceans. Regions of intense ship traffic as the 
North Atlantic and North Pacific indicate that observations relying on in-situ measurements might 
be more accurate in these regions. The results are in review in Science Reports under the title 
“Utilizing climate models to estimate the quality of global observational data sets”. 
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Figure 5.4: Spatial distribution of observational reference quality. For each grid point, we display the 
observational reference that correlates best with most of the forecasts. We show data only in grid 
points where at least one forecast achieves a significant correlation with one observational reference 
The black box is the Niño3.4 region. Regions above 70°N or below 70°S are not considered, as these 
regions are usually ice-covered. The percentages below the color bar indicate the fraction of the 
oceans covered by each color. 
 

5.2 Assessment of forecast skill using observational uncertainties  
 
At BSC, seasonal forecast verification practice has been enhanced to account for 
observational uncertainties provided by the CCI sea-surface temperature (SST) data. More 
specifically, the uncertainty provided by CCI SST is compared to the uncertainty derived from 
alternative observational references (ORs) of SSTs and to other sources of uncertainty in 
verification in order to assess its relevance. Figure 5.5 shows the correlation skill of Niño3.4 
SSTs for predictions initialized in May predicting the consecutive four months (May-August). 
The correlation skill is accompanied with the uncertainties in the correlation skill shown as 
coloured areas around the sample estimate (dashed line). The uncertainty is decomposed into 
the observational uncertainty, the uncertainty originating from a limited ensemble size and the 
uncertainty from verifying the predictions for a limited period, constrained by the length of 
the CCI SST record (1992 - 2010). This analysis tells us two things: (1) the observational 
uncertainty can be an important source of uncertainty for the verification of seasonal 
predictions and current practice which does not account for these uncertainties should be 
revisited (2) the verification uncertainty is dominated by the length of CCI SST record; 
increasing the length of the record might hence reduce the uncertainty in model-observation 
comparison more than efforts devoted to reduce observational uncertainties.  
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Figure 5.5: Sub-seasonal to seasonal forecast skill of ECMWF S4 (10 members) with respect to SST 
CCI (dashed line). The areas show the 5-95% percentile range of the bootstrapped (106 samples) 
uncertainty sources around the sample correlation skill for (a) the uncertainty in the observations 
assessed using the SST CCI propagated uncertainty (l = 1000 km and t= 10 days) and the ensemble of 
different ORs and for (b) the sample uncertainty due to a limited ensemble size and record length of 
the SST CCI dataset. The grey area shows the total uncertainty obtained by resampling all sources at 
the same time 
 
Observational uncertainties do not only increase the uncertainty in the forecast quality 
assessment of seasonal predictions but also systematically impact the skill. Noise in the 
observations decrease the correlation skill (Massonnet et al., 2016) and observational 
uncertainties lead therefore to an underestimation of the deterministic prediction skill of 
seasonal predictions. Figure 5.6 shows an estimate of how much skill is lost in seasonal SST 
predictions due to the uncertainties in the CCI SST record using the correction for attenuation 
(Spearman 1904). The figure shows that correlation skill is underestimated by more than 0.2 
in various areas, which is highly relevant given that improvements in prediction skill due to 
improved model specifications is usually of a similar if not smaller magnitude (Prodhomme et 
al., 2016).  
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Figure 5.6: Reduction of correlation skill in ECMWF S4 due to the observational uncertainty for the 
prediction of the month of August (initialized in 1st of May) estimated using the correction for 
attenuation (Spearman 1904). The observational uncertainty is estimated by propagating SST CCI 
uncertainties to monthly means in each grid-point. Grid-points in grey denote areas where the 
observational uncertainty is larger than the interannual variability of the SST CCI and where as a 
consequence no correction for attenuation can be calculated. 
 
 
 

6. Discussion and conclusion 
 
As a conclusion of the CC4MIP simulations, the analysis of the 5 member ensembles of 
simulations performed with T127 model version shows a slight but significant impact SST 
differences between the CCI and the AMIP datasets. Differences generally are not exceeding 
0.1 to 0.2 K but the warmer temperature in the western tropical Pacific are sufficient to 
explain a significant increase of convective precipitation in the same region (about 10% of 
increase). Colder temperatures in the Indian Ocean have also an impact on the summer Indian 
monsoon. This is confirmed with the higher resolution simulations that also exhibit in boreal 
winter a circulation pattern at higher latitudes that resembles to a well-known teleconnexion 
with the western tropical Pacific. Conversely, we argue that the small differences in sea ice 
concentration between CCI and AMIP, particularly located in the marginal ice zone, seem not 
to have a significant impact on the simulated climate in spite of the high resolution of the 
analysed simulation. A complete demonstration would however require further investigation 
that could profit from similar CCI4MIP simulations performed with other atmospheric general 
circulation models. 
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Verification of seasonal climate prediction using ESA CCI observations and other 
observational datasets for the same variables reveals that forecast varies systematically, and 
robustly across multiple climate models, depending on which observational dataset is used. 
For SST we find that ESA CCI yields on average the highest forecast correlation which 
implies that the observational noise is smaller in ESA CCI compared to other SST products. 
The analysis presents a new paradigm of utilizing climate model prediction to estimate the 
quality of global observational data sets. 
 
First results which make use of the CCI SST uncertainty in model-observation 
intercomparison reveal a large research area which has hardly been explored. Advancing our 
practice to account uncertainties for both models and observations will likely impact our 
future understanding of the level of state-of-the-art seasonal forecast skill but also climate 
model capabilities in general.  
 
During the course of the project a discussion between CMUG partners (in particular SMHI) 
and CCI ice experts lead to the conclusion that  including all signals (maybe marking certain 
areas as uncertain) but otherwise providing the data as they are is not a good solution from the 
climate modeller’s perspective. Satellite groups should contain more knowledge over the “real 
world” sea ice conditions as modelling groups. Thus, it would be preferable if satellite groups 
provide their best estimate of the sea ice conditions instead leaving modelling groups to 
develop own algorithm to post-process the CCI data to make them usable for modelling 
activities. This would also lead to a large number of different “CCI”-like data sets. This was 
put in application since the version 2 of the sea ice concentration data set provided by the sea 
ice team includes both the raw variable that may exhibit some unrealistic values and a filtered 
variable but that might have the drawback of underestimating the sea ice concentration in 
marginal ice zones. This is this one that was used in the high resolution CCI4MIP simulation. 
 
A more general point overcoming the specific context of the uncoupled AMIP simulations or 
the relatively short term seasonal forecast simulations is that climate models show huge 
variations over time. Ocean circulation features like the AMOC and related ocean heat 
transports can vary on multi-decadal time scales and affect also sea ice on these time scales. 
Since global climate models used in non-initialized coupled simulations do not reproduce the 
climate of certain years (e.g. year 2000) but only a climate that is representative for the 
external forcings (top of the atmosphere solar radiation, greenhouse gas concentrations, 
aerosol concentrations,…) of this year, very long data sets are needed to evaluated climate 
models. In this context often 30 years are mentioned but this is the lower limit given the fact 
that many ocean quantities vary on 50-80 year time scales. 
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