ESA Climate Change Initiative CCI+

User Requirements Document

Issue 5 / Revision 0

15 July 2024

Deliverable No.:	D1.1
ESA Contract No.:	4000124098/18/I-NB
Science Lead & Prime:	Thomas Nagler, ENVEO IT GmbH, thomas.nagler@enveo.at
Technical Officer:	Anna-Maria Trofaier, ESA-ECSAT, anna.maria.trofaier@esa.int

To be cited as:

Derksen, C., T. Nagler and G. Schwaizer (2024) ESA CCI+ Snow ECV: User Requirements Document, version 5.0, July 2024.

	Name	Date
Checked by	Gabriele Schwaizer / ENVEO, Project Manager	03 / 07 / 2024
Authorized by	Thomas Nagler / ENVEO, Science Leader	03 / 07 / 2024
Accepted by	Anna Maria Trofaier / ECSAT, ESA Technical Officer	15 / 07 / 2024

This document is not signed. It is provided as electronic copy.

ESA STUDY CONTRACT REPORT							
ESA CONTRACT NO:	NTRACT NO: Subject: ESA Climate Change Initiative CCI+ - SNOW CONTRACTOR:						
4000124098/18/I-NB				ENVEO			
	User Requirements D	Docum	ent				
ESA CR ()No:	STAR CODE:	No of	VOLUMES: 5	CONTRACTOR'S	S REF:		
		THIS IS	S VOLUME NO: 5	Deliverable [01.1		
Variables (ECVs) derived monitoring activities. Th SCF; snow water equiv applications, including a snow_cci user communit derived specifically for th requirements workshop	from long-term satel is document outlines alent – SWE) obtain aspects of hydrology y, snow user requirem the <i>snow_cci</i> project bas s, and an online surv <i>cci</i> products are provi	llite da the re ned th and n nents v ased or rey to t	itiative aims to generate h ta records to meet the ne quirements for <i>snow_cci</i> i rough engagement with neteorology. This docume which pre-exist the <i>snow_c</i> input from the CRG, othe the targeted user commu nd mapped against the sp	eds of climate rese CVs (snow cover users from acros nt provides detai ci project, and requ CCI projects, snow nity. The consolid	earch and fraction – ss climate ils on the uirements w_cci user lated user		
The work described in this report was done under ESA Contract. Responsibility for the contents resides in the author or organisation that prepared it.							
Authors: Chris Derksen, Thomas Nagler, Gabriele Schwaizer							
ESA STUDY MANAGER: ANNA	MARIA TROFAIER / ECSA	Δ Τ	ESA BUDGET HEADING:				

Document Change Record

Version	Date	Changes	Originator
1.0	10 / 01 / 2019	First version	Derksen, C. and T, Nagler
1.0	21 / 01 / 2019	First version approved by ESA	Schwaizer, G.
2.0	06 / 12 / 2019	Updated version	Derksen, C. et al.
2.0	17 / 12 / 2019	Second version approved by ESA	Schwaizer, G.
3.0	07 / 12 / 2020	Third version draft	Derksen, C. et al.
3.0	12 / 01 / 2021	Third version approved by ESA	Schwaizer, G.
4.0	25 / 04 / 2022	Fourth version draft	Derksen, C. et al.
4.0	04 / 05 / 2022	Fourth version approved by ESA	Derksen, C. et al.
5.0	25 / 06 / 2024	Fifth version draft	Derksen, C. et al.
5.0	15 / 07 / 2024	Fifth version approved by ESA	Derksen, C. et al.

TABLE OF CONTENTS

1.	Intro	oduct	tion	1
1	.1.	Purp	pose and Scope	1
1	.2.	Doc	ument Structure	1
1	.3.	Арр	licable and Reference Documents	2
1	.4.	Acro	onyms	2
2.	User	rs of I	ECV Snow Products	4
2	2.1.	Usei	rs of ECV Snow Products	4
	2.1.2	1.	Climate Research Group	4
	2.1.2	2.	Other CCI Projects	5
	2.1.3	3.	Snow-Climate Research Community	5
2	2.2.	Rela	ited Initiatives	5
3.	User	r Req	uirements	7
3	8.1.	Snov	w Requirements from Other Initiatives	7
	3.1.2	1.	Global Climate Observing System (GCOS)	7
	3.1.2	2.	IGOS	3
	3.1.3	3.	OSCAR	Э
	3.1.4	4.	Summary of Requirements for Snow Parameters10	C
3	3.2.	Req	uirements from <i>snow_cci</i> User Workshops and snow community engagement	1
	3.2.2	1.	Baseline snow_cci Parameters	2
	3.2.2	2.	Requirements for ECV SCF and SWE Products13	3
4.	Sum	mary	y of User RequirementS	C
5.	Refe	erenc	es	3

This page is intentionally left blank.

1. INTRODUCTION

The European Space Agency (ESA) Climate Change Initiative aims to generate high quality Essential Climate Variables (ECVs) derived from long-term satellite data records to meet the needs of climate research and monitoring activities. This document outlines the requirements for *snow_cci* ECVs (snow cover fraction – SCF; snow water equivalent – SWE) obtained through engagement with users from across climate applications, including the detection of variability and trends, climate modelling, and aspects of hydrology and meteorology. The primary parameters to be evaluated are requirements for the GCOS parameters snow extent and snow water equivalent, from which snow depth can be inferred by estimating snow density.

1.1. Purpose and Scope

This document provides the user requirements for satellite-derived ECVs for fractional snow cover (SCF) across all snow covered regions, and snow water equivalent (SWE) for non-mountain regions. The SWE user requirements specific to mountain snow regions were addressed as part of the *snow_cci* Option 7 User Requirements Document [AD-6].

The user community for *snow_cci* SCF and SWE products is composed of three primary groups:

- The Climate Research Group (CRG) of the *snow_cci* project team, which conducts case studies on *snow_cci* data usage and act as the interface with the CCI Climate Modelling User Group (CMUG).
- Other CCI projects for which (1) snow is a required input variable in their processing chains such as land surface temperature; permafrost; soil moisture, or (2) snow may feed directly into or support the *snow_cci* processing chain such as *cloud_cci*.
- The broader snow-climate research community, including climate modelling, large-scale hydrology, meteorology, and operational environmental prediction. Note that other segments of the snow science community were not engaged such as local-scale hydrology, transportation and infrastructure, avalanches, etc. in order to retain focus on the global climate aspect of CCI ECVs.

1.2. Document Structure

This document first provides details on the *snow_cci* user community and associated initiatives (Section 2). Snow user requirements from other initiative which pre-date *snow_cci* were surveyed (Section 3.1). Requirements derived specifically for the *snow_cci* project were based on input from the CRG, other CCI projects, and *snow_cci* User Requirements workshops. The first *snow_cci* User Requirements workshops was supported by an online survey to the snow user community, which was

summarized in previous version of the User Requirements Document but is not included in this version. An overall summary is provided in Section 4.

1.3. Applicable and Reference Documents

- [AD-1] IGOS Cryosphere Theme Report: http://cryos.ssec.wisc.edu/docs/cryos_theme_report.pdf
- [AD-2] The GCOS Essential Climate Variable (ECV) Data Access Matrix: https://www.ncdc.noaa.gov/gosic/gcos-essential-climate-variable-ecv-data-access-matrix
- [AD-3] WMO Observing Systems Capability Analysis and Review Tool: <u>https://www.wmo-sat.info/oscar/</u>
- [AD-4] Global Cryosphere Watch: https://globalcryospherewatch.org/projects/snowwatch.html
- [AD-5] Derksen, C., T. Nagler and G. Schwaizer (2022) ESA CCI+ Snow ECV: User Requirements Document, version 4.0, April 2022 (<u>https://climate.esa.int/documents/1643/</u> Snow cci D1.1 URD v4.0.pdf).
- [AD-6] Derksen, C., L. Mudryk, and C. Mortimer. (2022) ESA CCI+ Snow ECV, Option 7 Feasibility Study for integrating Snow mass estimates for mountain areas in the SnowCCI SWE product: Annex to User Requirements Document, version 1.0, May 2022.
- [AD-7] Mortimer, C., C. Derksen, L. Mudryk (2023) ESA CCI+ Snow ECV, Option 7 Feasibility Study for integrating Snow mass estimates for mountain areas in the SnowCCI SWE product: Scientific Roadmap, version 1.0, August 2023.

1.4. Acronyms

CCI	Climate Change Initiative
CMIP	Coupled Model Inter-comparison Project
CMUG	Climate Modelling User Group
CNRS	Centre National de la Recherche Scientifique
CRG	Climate Research Group
ECCC	Environment and Climate Change Canada
ECMWF	European Centre for Medium Weather Forecast
ECV	Essential Climate Variable
ERA5	5 th major global ECMWF Reanalysis
ESM-SnowMIP	Earth System Model-Snow Model Inter-comparison Project
GCOS	Global Climate Observing System
IGOS	Integrated Global Observing Strategy
OSCAR	Observing Systems Capability Analysis and Review tool
SCA	Snow Covered Area, synonym for SCE

SCE	Snow Cover Extent
SCF	Snow Cover Fraction
SCFG	Snow Cover Fraction on Ground
SCFV	Snow Cover Fraction Viewable
SMHI	Swedish Meteorological and Hydrological Institute
SWE	Snow Water Equivalent
ТОРС	Terrestrial Observation Panel for Climate
UED	University of Edinburgh
WMO	World Meteorological Organization

2. USERS OF ECV SNOW PRODUCTS

This section provides an overview of the various elements of the *snow_cci* user community (Section 2.1). *Snow_cci* primarily aims to generate products for climate applications across various domains, including climate observations, climate modelling, hydrology, and meteorology. Based on user responses from these communities, requirements for *snow_cci* products were derived (as presented in Section 3). Terrestrial snow user requirements from other international initiatives are also provided as context to *snow_cci* (Section 2.2).

2.1. Users of ECV Snow Products

2.1.1. Climate Research Group

The Climate Research Group (CRG) is an expert advisory group embedded within the *snow_cci* project to provide assessments of the value and significance of products emerging from the project by carrying out climate-relevant use cases. Collectively, the CRG have wide and internationally recognised expertise in observational and modelling studies of seasonal snow dynamics in response to climate variability and change and are ideally placed to assess the value and contribution of the *snow_cci* project for their specific applications. The five case studies are:

- Regional and global snow cover trend analysis in support of climate assessments (lead C. Derksen / ECCC). Analysis of snow_cci products to estimate both global and regional SCF and SWE trends. Trends from the snow_cci products are also compared with observationally constrained land surface models.
- Elevation dependence of SWE trends in observations vs regional climate models (lead M. Ménégoz / IGE; G. Krinner / CNRS). Snow_cci products are used to evaluate SWE trends in mountain regions over the historical period for comparison with coupled climate model simulations.
- Evaluation of ESM-SnowMIP simulations using snow_cci products (lead R. Essery / UED). Snow_cci products are used to extend the evaluation of snow model simulations over larger regions and longer time periods than covered by in situ measurements.
- 4. Use of CCI+ snow products to explain impacts of climate change on the hydrological regime in the pan-arctic drainage basin of the Arctic Ocean (lead D. Gustafsson / SMHI). Snow_cci products are applied to investigate the role of snow cover changes relative to the observed changes in the hydrological regimes (streamflow timing and magnitude) over large pan-arctic drainage basins of the Arctic Ocean.
- 5. Multi-decadal comparison between the ECMWF ERA5 climate reanalysis and the snow_cci snow cover data records (lead P. de Rosnay / EMCWF). Snow_cci products are assessed for

their potential contribution to ERA5 ECMWF reanalysis, including potential engagement with other operational centres.

The CRG is also the *snow_cci* interface to the CCI CMUG team, in order to coordinate information exchange on requirements, product specifications, and data sets to support international climate modelling activities. Further details on the CRG case studies are provided annually in the Climate Applications Report (CAR; Deliverable 5.1).

2.1.2. Other CCI Projects

Other CCI projects represent an important user group for *snow_cci* products. Snow is a required input variable in their processing chains. The following CCI projects have provided their requirements for snow products:

- permafrost CCI
- land surface temperature CCI
- soil moisture CCI

2.1.3. Snow-Climate Research Community

There is an extensive user community for satellite-derived ECVs of SCF and SWE spanning diverse disciplines across climatology, hydrology, ecology, and numerical modelling. There is a range of maturity across this community with respect to the use of satellite data, ranging from exploratory research to operational applications. The objective of the user community engagement was to solicit requirements for *snow_cci* from users with a climate focus, and hence the need for consistent, objective, long time series of SCF and/or SWE data covering extensive spatial domains. This includes the evaluation of climate models, land surface modelling (including data assimilation), hydroclimatology, and ecological applications. A *snow_cci* user group email list is maintained for the distribution of product updates. The snow-climate research community is kept informed of snow_cci activities through channels such as the Snow International (SINTER) working group (https://nsidc.org/sinter).

2.2. Related Initiatives

A number of initiatives have compiled requirements for in situ and satellite-derived snow observations. These will be presented in Section 3.1 in order to provide context for the *snow_cci* user requirements. The following initiatives are included:

1. The <u>Global Climate Observing System (GCOS)</u> is a United Nations *Framework* Convention on Climate Change (UNFCCC) sponsored initiative to ensure that adequate global observations are available to support climate related monitoring and research. Three expert panels provide an ongoing focus on the atmosphere, ocean, and land, with terrestrial snow requirements defined and collated by the Terrestrial Observation Panel for Climate (TOPC).

- 2. The <u>Integrated Global Observing Strategy (IGOS)</u> seeks to strengthen and coordinate satellite and in situ data acquisition in support of global environmental observations. A summary of current and planned capabilities and requirements for terrestrial snow *parameters* was produced as part of an IGOS-Cryosphere theme report (2007).
- 3. The <u>Observing Systems Capability Analysis and Review Tool (OSCAR)</u> was developed by the World Meteorological Organization (WMO). It links user-defined requirements for earth observation of physical variables (required across weather, water, and *climate* applications) to satellite and surface-based capabilities.

3. USER REQUIREMENTS

This section summarizes snow user requirements from other initiatives as context, before presenting the *snow_cci* user requirements determined from User Workshops and accompanying online user surveys. The requirements from GCOS, IGOS, and OSCAR (Section 3.1) are necessarily broad, covering a range of applications (of which climate is just one) and techniques (satellite and surface measurements). Conversely, the *snow_cci* requirements (Section 3.2) are more narrowly defined to deliver essential climate variables derived from satellite data. As such, the *snow_cci* requirements occupy part of the broader distribution of snow user requirements.

3.1. Snow Requirements from Other Initiatives

3.1.1. Global Climate Observing System (GCOS)

A summary of GCOS requirements for terrestrial snow ECVs is summarized in Table 3.1. The characteristics for snow covered area (SCA) and SWE are similar: daily data at 1 km resolution, with a more stringent spatial resolution requirement in complex terrain are required. The accuracy requirements are expressed as a percentage for SCA and in absolute terms (mm) for SWE, but the values are similar because 10 mm SWE uncertainty corresponds to 5% to 10% for snow packs with 100 to 200 mm SWE. Unlike the IGOS requirements (Section 3.1.2), there is no consideration within GCOS for how these requirements align with current spaceborne capabilities. For instance, while 1 km is achievable for SCA from existing and heritage optical sensors, there is no appropriate spaceborne measurement at this resolution from which SWE can be derived. The GCOS requirements for snow are currently undergoing a review, so an update is anticipated in advance of the next *snow_cci* product release.

Product	Frequency	Resolution	Measurement Uncertainty	Stability
Snow Covered Area	Daily	1 km 100 m complex terrain	5% (maximum error of omission and commission in snow area) location accuracy better than 1/3 IFOV with target IFOV 100 m in areas of complex terrain, 1 km elsewhere	4% (maximum error of omission and commission in snow area); location accuracy better than 1/3 IFOV with target IFOV 100 m in areas of complex terrain,1 km elsewhere
SWE	Daily	1 km	10 mm	10 mm
Snow Depth	Daily	1 km 100 m in complex terrain	10 mm	10 mm

Table 3.1: GCOS Requirements for ECV snow, regarding the parameters snow covered area, snow water equivalent (SWE) and snow depth, according to GCOS Report Nr. 200 (2016).

3.1.2. IGOS

A summary of capabilities and requirements for terrestrial snow parameters (both surface and satellite-derived) from the IGOS-Cryosphere theme report is shown in Table 3.2. Requirements are differentiated between threshold (the minimum necessary) and objective (desired future target) values. As this report was issued in 2007, the progress in satellite snow cover product development is clearly evident relative to the IGOS current/threshold/objective requirements. The 'target' of 0.5 km snow cover information is now 'current' via measurements from MODIS, VIIRS or SLSTR; the objective requirement of 0.1 km is now possible using, for instance, Sentinel-2 MSI measurements, although not on a daily basis. Capabilities for satellite-derived SWE, however, do not approach the threshold requirements as defined by IGOS (e.g. 0.5 km resolution).

Table 3.2: IGOS Summary of current/planned capabilities and requirements for terrestrial snow parameters. C = Current Capability, T = Threshold Requirement (Minimum necessary), O= Objective Requirement (Target), L = Low end of measurement range, U = Unit, H = High end of measurement range, V = Value (http://cryos.ssec.wisc.edu/docs/cryos theme report.pdf).

			easurement Range		Measu	rement		Res	olution		
Parameter	C	Measu	rement	Range	Accu	iracy	Spa	atial	Tem	poral	Comment or Principal
	0	L	н	U	v	U	v	U	v	U	Driver
Snow Cover	С	20	100	%	15-20	%	1	km		day	e.g. MODIS
	т	0	100	%	10	%	0.5	km	1	day	Hydromet
	0	0	100	%	5	%	0.1	km	12	hr]
Snow Water	С	0	0.2	m	2-10	cm	25	km	1	day	e.g. AMSR-E
Equivalent, satellite (Shallow)	т	0	0.3	m	3	cm	0.5	km	6	day	Hydromet
(0	0	0.3	m	2	cm	0.1	km	12	hr	1
Snow Water Equivalent, satellite	С	none									Need HF SAR
(Deep)	т	0.3	3	m	10	%	0.5	km	6	day	Hydromet
	0	0.3	3	m	7	%	0.1	km	12	hr	1
Snow Water	С	0	3	m	1	cm	1	m	30	day	Hydromet
Equivalent, in situ (Shallow)	т	0	3	m	1	em	1	m	7	day	Hydromet
	0	0	3	m	1	em	1	m	1	day	1
Snow Depth, satellite	С	0	~0.7	m	6-35	cm	25	km	1	day	e.g. AMSR-E
(Shallow)	т	0	1	m	10	em	0.5	km	6	day	Hydromet
	0	0	1	m	6	em	0.1	km	1	hr	Transportation
Snow Depth, satellite (Deep)	С	none									Need HF SAR
	т	1	10	m	10	%	0.5	km	6	day	Hydromet
	0	1	10	m	6	%	0.1	km	1	hr	Transportation
Snow Depth, in situ	С	0	10	m	1	cm	1	m	1	day	Hydromet
	т	0	10	m	1	cm	1	m	6	hr	Hydromet
	0	0	10	m	1	cm	1	m	1	hr	1

3.1.3. OSCAR

A summary of requirements collated within OSCAR for snow cover and SWE are shown in Table 3.3 and Table 3.4, respectively. Similar to IGOS, the OSCAR requirements differentiate between threshold (minimum requirement), breakthrough (requirements which represents a notable improvement from the threshold), and goal (the ultimate target) requirements. Because OSCAR is a resource which aggregates requirements from various sources and communities, a wide range is evident: for example, the needs of numerical weather prediction are quite different from climate and hydrology. Even within application areas there can be a broad range of requirements. For instance, the requirements defined by CliC and GEWEX, two different climate-oriented projects within the World Climate Research Program, capture different requirements for snow cover and SWE.

Table 3.3: Summary of OSCAR requirements defined for snow cover. (<u>https://www.wmo-</u><u>sat.info/oscar/variables/view/143</u>). Goal is marked blue, breakthrough green, and threshold orange.

App Area 🗘	Uncertainty	Stability / decade	Hor Res	Ver Res	Obs Cyc	Timeliness
Climate-AOPC (deprecated)	10 % 13 % 20 %		100 km 200 km 500 km		24 h 2 d 7 d	6 h 12 h 24 h
CLIC (deprecated)	10 % 13 % 20 %		1 km 2.9 km 25 km		24 h 41 h 5 d	7 d 11 d 30 d
GEWEX (deprecated)	10 % 20 % 50 %		15 km 50 km 250 km		24 h 2 d 7 d	30 d 45 d 90 d
Global NWP	10 % 20 % 50 %		5 km 15 km 100 km		3 h 24 h 5 d	3 h 24 h 5 d
High Res NWP	5 % 15 % 20 %		1 km 5 km 20 km		60 min 3 h 12 h	60 min 3 h 12 h
<u>Hydrology</u>	5 % 8 % 20 %		0.1 km 1 km 100 km		24 h 46 h 7 d	24 h 44 h 6 d
Nowcasting / VSRF	10 % 13 % 20 %		5 km 10 km 50 km		60 min 6 h 24 h	60 min 2 h 6 h
Agricultural Meteorology	2 % 4 % 10 %		1 km 2.2 km 10 km		5 d 6 d 7 d	24 h 44 h 6 d
Climate-TOPC (deprecated)	5 % 7 % 10 %		0.1 km 0.45 km 10 km		24 h 3 d 30 d	30 h 3 d 15 d

App Area 🗘	Uncertainty	Stability / decade	Hor Res	Ver Res	Obs Cyc	Timeliness
Climate-AOPC (deprecated)			100 km 200 km 500 km		24 h 2 d 7 d	6 h 12 h 24 h
CLIC (deprecated)	5 mm 8 mm 20 mm		10 km 13.6 km 25 km		24 h 41 h 5 d	7 d 11 d 30 d
GEWEX (deprecated)	5 mm 10 mm 20 mm		15 km 50 km 250 km		12 h 24 h 7 d	30 d 45 d 90 d
<u>Global NWP</u>	2 mm 10 mm 20 mm		5 km 15 km 100 km		3 h 24 h 5 d	3 h 24 h 5 d
<u>High Res NWP</u>	5 mm 8 mm 20 mm		0.5 km 2 km 20 km		60 min 3 h 6 h	60 min 3 h 24 h
<u>Hydrology</u>	5 mm 8 mm 20 mm		0.1 km 0.464 km 10 km		24 h 46 h 7 d	24 h 44 h 6 d
Agricultural Meteorology	5 mm 23.2 mm 500 mm		30 km 2.2 km 10 km		7 d 11 d 30 d	24 h 46 h 7 d
SIAF (deprecated)	5 mm 10 mm 20 mm		50 km 100 km 500 km		24 h 2 d 7 d	24 h 2 d 7 d
<u>SSLP</u>	5 mm 10 mm 20 mm		50 km 100 km 500 km		24 h 2 d 7 d	24 h 2 d 7 d

Table 3.4: Summary of OSCAR requirements defined for snow water equivalent. (<u>https://www.wmo-sat.info/oscar/variables/view/145</u>). Goal is marked blue, breakthrough green, and threshold orange.

3.1.4. Summary of Requirements for Snow Parameters

A synthesis of input from GCOS, IGOS, and OSCAR illustrates the full range of user needs, within which *snow_cci* requirements and product specification occupy a specific niche. For both snow cover extent (SCE) and SWE, there are three general categories of users each with unique requirements: (1) climate, (2) terrestrial applications such as hydrology and agriculture, and (3) numerical weather prediction (NWP). In a general sense, the requirements for climate are relaxed with respect to characteristics such as spatial resolution and latency; NWP needs are most demanding, particularly for regional and/or nowcasting applications. Common requirements across applications are the need for daily data across extensive spatial domains.

The general baseline requirements for **snow cover** are daily data at spatial resolutions of at least 1 km with uncertainty of 5 to 10%. Because of the different variables related to snow cover (snow extent; snow covered area; snow cover fraction) it's not always clear from the requirements tables exactly what the uncertainty values correspond to, or how they can be derived.

A distinction in spatial resolution requirements is made between alpine and non-alpine regions due increased snow heterogeneity in complex terrain. The update frequency, latency, and repeat interval vary between applications. Requirements for attributes specific to the derivation of snow cover parameters from optical remote sensing are not provided. For example, there are no user requirements for cloud screening and clearing.

The general baseline requirements for **snow water equivalent** are similar to snow extent: daily data with spatial resolution of 1 km with uncertainty of approximately 10%. In some cases, the heritage of SWE retrieval from satellite passive microwave measurements is reflected in a more realistically achievable spatial resolution (5 to 25 km), and a distinction between shallow and deep snow. This is similar to the simple versus complex terrain requirements for SCE and reflects the tendency for passive microwave measurements to saturate under deep snow conditions.

In summary, the GCOS requirements represent a reasonable consensus for satellite snow products: daily data at 1 km spatial resolution with 5-10% uncertainty. For snow cover parameters, these align closely with the capabilities of the spaceborne optical measurements used to derive these products. For SWE, the spatial resolution requirements cannot be achieved using satellite data alone. Product-specific requirements are lacking from the existing user requirements summarized here. This includes user needs related to metadata, data format (file format, projection, etc.), and access. It is also important to note that requirements are available for other snow variables not discussed here, such as snow depth, albedo, and snow wet/dry state (https://www.wmo-at.info/oscar/variables/view/144).

3.2. Requirements from *snow_cci* User Workshops and snow community engagement

User requirements were continually refined during Phase 1 of *snow_cci* through the following engagement activities:

- 1. A user requirements workshop was held on 29 November 2018 at the Zentralanstalt für Meteorologie und Geodynamik (ZAMG, renamed to Geosphere Austria in 2023), in Vienna, Austria. The workshop presentations covered product development, processing plans, and baseline specifications for the *snow_cci* Phase 1 SCF and SWE products. Use cases (with associated requirements) were presented by CRG members, representatives of other CCI projects, and the snow-climate user community. There was group discussion to establish consensus on baseline product specifications for *snow_cci* products, approaches to deriving and delivering the uncertainty characterization, priorities for algorithm improvement, and potential approaches for temporal and spatial aggregation of *snow_cci* products.
- Twenty responses were submitted to an online user requirements survey, sent to a targeted group of respondents covering the three *snow_cci* user categories outlined in Section 2.1. In addition to multiple choice questions, there was the opportunity to provide free-form input,

which was submitted by nearly all respondents. Full results from the online survey were provided in in the Phase 1 URD [see AD-5]. For some product characteristics, a clear consensus was evident in the survey responses; in some cases, the requirements are application-specific and therefore quite broad.

3. A virtual user workshop was held near the end of *snow_cci* Phase 1 (May 2021). Presentations covered the use of *snow_cci* products by the CRG and CMUG, and the development of connections with other CCI datasets (e.g. permafrost). Discussion covered a review of the user requirements in the context of updating the recommendations from the first User Workshop, revisiting the specifications of *snow_cci* Phase 1 products (SCF and SWE), and identifying priority areas of development for Phase 2 products.

Based on the input gathered through the three steps outlined above, the evolution of user requirements was mapped to the specifications of the *snow_cci* products released during Phase 1 and Phase 2 (see Section 3.2.1). The user requirements are further assessed in the context of developmental plans the second round of product releases later in Phase 2 (see Section 3.2.2).

3.2.1. Baseline snow_cci Parameters

A summary of the *snow_cci* baseline product specifications at the outset of Phase 2 is provided in Table 3.5.

	Snow Extent	Snow Water Equivalent
Parameter	Fractional snow extent [%]	Snow mass
Description	Viewable Snow (SCFV) Snow on Ground (SCFG) - forested areas only as SCFV and SCFG are the same in open areas	Snow depth converted to SWE via density
Spatial Coverage	Global (without Antarctica and Greenland ice sheet)	NH non-mountain areas (without Antarctica and all of Greenland)
EO Data	Optical imagery	Passive microwave brightness temperatures
Spatial Resolution	Ca. 4 km Ca. 1 km	Ca. 10 km
Period	1979 – onwards (AVHRR GAC 4 km) 1992-1999 (AVHRR LAC 1 km) 2000 – 2023 (MODIS 1 km) 2023 – onwards (SLSTR 1km)	1979 – onwards
Frequency	Daily	Daily
Update Frequency	Annual	Annual
Map Projection	Geographic Grid (Lat/Lon)	Geographic Grid (Lat/Lon)

Table 3.5: Snow	cci baseline EC	/ product specifications.

These specifications consider only the basic product parameters and are driven largely by the capability and availability of satellite measurements and algorithms. The snow extent related *snow_cci* product is per-pixel fractional snow extent retrieved from optical imagery and expressed as a percentage, which represents a notable improvement over a simple binary snow/no-snow classification. SWE is derived from a snow depth retrieval from the assimilation of passive microwave measurements and surface snow depth observations converted to SWE via an estimate of snow density.

3.2.2. Requirements for ECV SCF and SWE Products

Requirements for the *snow_cci* products reflect input from the online survey, user workshops, and ongoing engagement with the user community, considered alongside the capabilities of satellite measurements and associated retrieval algorithms. The requirements are summarized in a series of tables, organized by general product characteristics. Note that the publicly released SWE and SCE products start with CRDP v1.0 (released in 2021) followed by CRDP v2.0 (2022) and CRDP v3.0 (2024). In each case, requirements met by the *snow_cci* Phase 2 products are highlighted in green rows. Changes to product specifications through new product releases addressed some user requirements not met by earlier product versions. Requirements not met by the latest release (CRDPv3) are flagged through user comments in red rows. These tables will continue to be updated in the subsequent versions of the User Requirement Document. First, temporal and spatial considerations for the SCF and SWE products are summarized in Table 3.6.

	cci Product acteristics	Spatial Domain	Spatial Resolution	Temporal Coverage	Temporal Resolution	Update Frequency
SCF	CRDPv1 CRDPv2	Global land areas without ice sheets (Antarctica /	0.05 deg 0.01 deg	Single-sensor: 1982 onwards	Daily	Annual
	CRDPv3	Greenland)	SCE resolution	2000 onwards User requirement	No change	Snow CCI will not address
	CRDPv4		needs are broad, but 0.01 deg meets the majority of needs	for multi-sensor homogenized dataset		NWP user requirement for near real time processing (6 hours latency)
SWE	CRDPv1		0.25 deg			
	CRDPv2	Northern Hemisphere	0.125 deg	1979 onwards	Daily	Annual
	CRDPv3		0.120 deg			
	CRDPv4	Snow CCI will not meet user needs for southern hemisphere retrievals	Resolution enhancement addresses a clear user requirement		Daily Monthly	Snow CCI will not address NWP user requirement for near real time processing (6 hours latency)

Table 3.6: Summary of spatial and temporal requirements for the *snow_cci* products. Green rows indicate decisions made for previous CRDP releases; red rows indicate considerations for upcoming versions.

Phase 1 SWE products covered northern hemisphere non-mountain regions. This addressed all the user needs captured by the online survey and the user workshops, but there is a notable gap for the mountain snow community. To address this gap, work in *snow_cci* Phase 2 (Option 7) explored appropriate techniques for adding mountain snow in the SWE product. This will not be achieved by extending the current algorithm, but rather requires a new approach. There are no plans to extend the SWE product to the southern hemisphere because most snow occurs in high elevation or coastal areas which will be alpine, and land/sea masked.

SCF products are focused on global land areas excluding permanent snow and ice areas and ice sheets (Greenland, Antarctica). Some users have very specific needs that are not currently met, such as the Antarctic dry valleys and islands in the Southern Ocean (e.g. South Georgia). These regions remain under consideration for future product versions. The spatial resolution for SCF is limited by the characteristics of historical optical satellite data. The AVHRR-derived time series from 1979 onward will be at 0.05 degrees resolution, improving to 0.01 degrees starting with the availability of MODIS data in 2000 and continued wit SLSTR data since 2023 (there will be products generated from 1km AVHRR LAC data for 1992-1999, but the coverage is not as good as with MODIS starting in 2000). Separate time series at each resolution were processed for Phase 1, but a homogenized multi-sensor dataset will be developed later during Phase 2, a priority for many users. SCE resolution requirements span 100 m to 10 km, but the 0.01 to 0.05 resolution range meets the majority of user needs. The SWE CRDPv1 resolution of 0.25 degrees met the majority of climate user requirements. The SWE CRDPv2 product utilized higher resolution and resampled brightness temperatures at 12.5 km resolution, addressing the needs of user who requested finer grid spacing. Validation experiments quantified improvements in algorithm performance related to the new brightness temperature inputs (Mortimer et al., 2022). The annual CCI product update schedule meets all user requirements, with the exception of operational environmental prediction (e.g. NWP) which requires a latency of <6 hours. This near real time service is not considered to be part of the CCI mandate.

A summary of technical characteristics for the SCF and SWE products is provided in Table 3.7.

_	cci Product acteristics	Map Projection	File Format	Product Access	Metadata
SCF	CRDPv1			CCI north	
	CRDPv2	Geographic	Daily	CCI portal	
	CRDPv3	Grid (Lat/Lon)	Daily netCDF	CCI portal, delivery of data to Obs4MIPs and ESMValTool to be discussed with CMUG	Sensor zenith angle and image acquisition times added as additional variables
	CRDPv4	No change	No change	Delivery of data to Obs4MIPs and ESMValTool, CCI portal	

Table 3.7: Summary of product requirements for the *snow_cci* products. Green rows indicate decisions made for previous CRDP releases; red rows indicate considerations for upcoming versions.

_	cci Product acteristics	Map Projection	File Format	Product Access	Metadata
SWE	CRDPv1				
	CRDPv2	Geographic	Daily	CCI portal	
	CRDPv3	Grid (Lat/Lon)	netCDF	CCI portal, delivery of data to Obs4MIPs and ESMValTool to be discussed with CMUG	
	CRDPv4	No change	No change	Deliver data to Obs4MIPs and ESMValTool, CCI portal	

A geographic (lat / lon) grid, netCDF file format, and ftp data acquisition via the CCI data portal meet the vast majority of user requirements but the delivery of data to Obs4MIPS and ESMValTool should be finalized to facilitate broader outreach to users. A notable improvement in CRDPv3 was the inclusion of sensor zenith angle and image acquisition times as additional variables. This metadata was requested by users to assist in data assimilation applications. As the products evolve, data flags related to potential cloud-gap filling procedures will need to be developed. Efforts to gather additional metadata requirements from the user community are ongoing.

A summary of accuracy/uncertainty requirements for the SCF and SWE products is provided in Table 3.8.

snow_cci Product Uncertainty		Accuracy Requirement	Accuracy Determination	Per-pixel Uncertainty	Delivery of Uncertainty
SCF	CRDPv1 CRDPv2 CRDPv3	10-20% Unbiased RMSE	Validation conducted via comparisons with in situ data and high resolution optical imagery	Essential for applications such as data assimilation; derived as part of SCF retrieval	Accuracy determination provided via the Product Validation and Intercomparison Report Uncertainty maps provided as layer in daily netCDF files
	CRDPv4	Requirement unchanged; continue to improve accuracy through algorithm enhancements		Changes required to ensure consistency between SLSTR, MODIS and AVHRR products	

Table 3.8: Summary of product uncertainty requirements for the *snow_cci* products. Green rows indicate decisions made for previous CRDP releases; red rows indicate considerations for upcoming versions.

	snow_cci ict Uncertainty	Accuracy Requirement	Accuracy Determination	Per-pixel Uncertainty	Delivery of Uncertainty
SWE	CRDPv1	20-30% unbiased RMSE	Systematic bias estimated via comparison with independent snow course data		
	CRDPv2	Improved temporal homogeneity achieved through new input passive microwave dataset Dynamic snow density introduced in post- processing	Reported in Mortimer et al. (2022)	Essential for applications such as data assimilation; derived as part of SCF retrieval	Accuracy determination provided via the Product Validation and Intercomparison Report Uncertainty maps provided as layer in daily netCDF files
	CRDPV3	Dynamic snow density moved into retrievals	Improved dry snow detection and snow masking		
	CRDPv4	Requirement unchanged		Requires update	

The extent to which the products meet the accuracy requirements (expressed as unbiased RMSE) is determined through the use of independent reference datasets: snow course data for SWE; in situ snow depth data and high resolution optical imagery for SCF. These validation statistics, along with inter-comparisons with other snow products are reported in the Product Validation and Inter-comparison Report (PVIR; Deliverable 4.1). Additional metrics such as bias are combined with RMSE to provide measures of the systematic error. General feedback from users is that *snow_cci* products are thoroughly and rigorously validated.

Per-grid cell uncertainty is produced from the algorithm processing for both SCF and SWE (delivered via the daily netCDF files) and quantifies the random error component. This is described in the End-toend Uncertainty Budget (E2EUB; Deliverable 2.3). Collectively, the derivation of systematic and random error meets user requirements. Understanding the systematic bias is required for applications such as climate model evaluation, model initialization, and trend determination. Daily, per-grid cell uncertainty is essential for applications such as data assimilation. While this uncertainty information is included in all product versions, users have expressed needs for improvement for future versions, specifically changes are required to ensure consistency in the approach to SCF calculations between MODIS and AVHRR SCF products. The omission of sensor and solar zenith angles as primary sources of SCF uncertainty was also identified as a significant limitation. The systematic component of the SWE

uncertainty also requires updating to account for updates to reference SWE datasets and the inclusion of dynamic snow density in the retrieval.

A summary of product development requirements for the SCF product is provided in Table 3.9. A primary limitation is the influence of clouds, which obscure the surface and must be masked. There remains no clear user requirement with respect to the filling of cloud-covered areas using measurements from previous days when the surface was viewable (as is done, for instance, with the MODIS Cloud Gap Filled product; Hall et al., 2010). For some users, cloud-gap filling based on a physically based approach is desired, with flags to indicate where and from when cloud-gap filled data were used. These users typically screen for snow (e.g. the CCI soil moisture and LST projects). Other users noted that cloud-gap filling could be done following data acquisition, using in-house tools. Finally, some users noted it is important to not cloud fill for operational applications where a lack of information is preferred over SCF retrievals using some time lag. There was no cloud-gap filling of the SCF product in Phase 1. The generation of gap-filled SCF products is currently being investigated within Option 13.

Table 3.9: Summary of SCF product development requirements. Green rows indicate decisions made for previous CRDP releases; red rows indicate considerations for upcoming versions.

SCF Product	Cloud Gap Filling	Temporal Aggregation	Spatial Aggregation
CRDPv1	No con filling		
CRDPv2	No gap filling		
CRDPv3	No gap filling but changes to cloud masking for AVHRR (change to EUMETSAT FDR)	No temporal aggregation (daily data)	None (0.01 and 0.05 deg only)
	Option 13 in progress to investigate physically-based approach to cloud gap filling	Temporal aggregation addresses some user requirements	Aggregation to 0.25 deg for consistency with SWE product
CRDPv4	Some applications require no gap filling	Document tools/methodology for temporal SCF aggregation	Document tools/methodology for spatial SCF aggregation require development
		Flagging required (e.g. number of surface looks within weekly aggregation period)	Flagging required

There is a user requirement to provide a spatially aggregated 0.1 degree SCF product for consistent analysis of trends and model simulations with the SWE product. The temporal and spatial aggregation of daily SCF products is non-trivial because of the influence of clouds and the computation of 'SCF' from a variable number of clear-sky observations within the averaging window. For Phase 1, the SCF and SWE products were provided on a daily basis with aggregation left to the users. Tool development for aggregation will be considered in Phase 2. Spatially, the methodological approach will need to consider that clouds may obscure all or part of the 0.12 degree grid cells. Temporal aggregation to a

weekly product will mitigate the influence of clouds, but a gap-filling scheme remains to be developed. Regardless, clear flagging and metadata will be required to indicate the temporal and spatial provenance of the raw data before aggregation. There was no clear user demand for monthly averaged SCF, given that snow is a dynamic variable, and can evolve from complete snow cover to complete snow-free conditions within a single month.

A summary of product development requirements for the SWE product is provided in Table 3.10.

SWE Product	Alpine Regions	Weather Stations	Temporal Aggregation	Spatial Aggregation	Algorithm Enhancements
CRDPv1	Masked	Weather stations screened for basic consistency criteria. Impact of weather station homogeneity determined via comparison with developmental dataset derived using time series of consistent weather station input	Daily	None (0.25 deg only)	Improved emission models: forest cover; sub- grid lakes
CRDPv2					Dynamic snow density; enhanced spatial resolution
CRDPv3	Masked; Retrievals for mountain areas under investigation within Option 7	Weather stations screened for basic consistency criteria	Daily Monthly Monthly bias- corrected data for February through May based on Pullianen et al., 2020	None (0.10 deg only)	Improved snow detection and masking
CRDPv4	Update complex topography mask to be more inclusive of all mountain regions Continue to develop alternative method for mountain areas	No change	Daily Monthly	Development of a synergistic SCF+SWE product	

Table 3.10: Summary of SWE product development requirements. Green rows indicate decisions made for
previous CRDP releases; red rows indicate considerations for upcoming versions.

While the SWE product will continue to mask alpine areas, development activities within Option 7 led to the definition of a roadmap to provide mountain-specific SWE retrievals based on a Bayesian SWE reconstruction using the *snow_cci* SCF product and a physical snow model [AD-7]. Further development work is needed before a global mountain SWE product can be developed.

During Phase 1, it was a user requirement to determine the impact of weather station homogeneity on the consistency of the SWE time series. This was addressed by comparing temporally variable weather station input (*snow_cci* v1) with a developmental time series derived using a smaller set of consistent weather station input. This assessment identified very little impact on product performance via the validation statistics (Mortimer et al., 2022). For Phase 2, weather stations used as part of the SWE retrievals must pass quality check standards but are not fully consistent across the multi-decadal time series. Some users requested a SWE product that does not use any in situ data. This cannot be produced because (as shown in SnowPEx) in situ data are mandatory to produce realistic SWE retrievals.

Daily and monthly averaged SWE data will be produced at 0.10 degree resolution. Any further temporal and spatial aggregation will be performed to meet the CMUG requirements.

At present, the SCF and SWE products are fully independent. This means there will be differences in, for example, the snowline location between the two products. These differences will be reflected in climatologies, anomalies, and trends that will not be consistent. For instance, snow extent trends derived from the SCF product will not be the same as snow extent trends derived from the SWE product. A prototype fully synergistic SCF and SWE product will be investigated later in Phase 2. There is strong user demand for such a product.

4. SUMMARY OF USER REQUIREMENTS

Consolidated user requirements for *snow_cci* products are provided in Table 4.1 (SCF) and Table 4.2 (SWE), mapped against the baseline specifications of the current products.

Table 4.1: Consolidated user requirements for SCF (right column) compared to the *snow_cci* Phase 1 and anticipated Phase 2 product specifications. Green highlighted text indicates agreement between requirement and specification. Yellow highlighted text indicates further development required to meet requirement.

	Snow Cover Fraction Phase 1 Specifications	Snow Cover Fraction Phase 2 Specifications	Snow Cover Fraction User Requirements
Description	Viewable Snow (snow on top of forest canopy) Snow on Ground (canopy correction applied)	Viewable Snow (snow on top of forest canopy) Snow on Ground (canopy correction applied)	Correction for canopy effects to yield snow on ground information in forested areas.
Spatial Coverage	Global (without Antarctica and Greenland ice sheet)	Global (without Antarctica and Greenland ice sheet)	Global (without ice sheets of Antarctica and Greenland), but include ice free areas in Greenland
Grid Spacing	Ca. 5 km (1982 – present) Ca. 1 km (2000 – present)	Ca. 5 km (1982 – present) Ca. 1 km (2000 – present)	500 m to 1 km
Map Projection	Geographic Grid (Lat/Lon)	Geographic Grid (Lat/Lon)	Geographic Grid (Lat/Lon)
Period	1982 – onwards (5 km) 2000 – onwards (1 km)	1982 – onwards (5 km) 2000 – onwards (1 km)	As long as possible with inter-sensor consistency
Frequency	Daily	Daily (method for temporal aggregation to be developed)	Daily and Weekly
Spatial Aggregation	None	To be determined	0.25 deg CMUG requirement
Update frequency	Annual	Annual	Annual for climate Sub-daily for NRT (Note: NRT services are not the aim of <i>snow_cci</i>)
Coding	8-bit (0-255)	8-bit (0-255)	8-bit (0-255)
Format	netCDF	netCDF	netCDF
Accuracy	10-20% RMSE	10-20% RMSE	10-20% RMSE
Uncertainty Metric	Unbiased RMSE	Unbiased RMSE	Unbiased RMSE Requires consistency across sensors
Cloud-Gap Filling	None	None (option planned for Phase 2)	Some users request cloud-gap filling
Data Access	CCI data portal (includes ftp)	CCI data portal (includes ftp)	CCI data portal, Obs4MIPs and ESMValTool
Metadata	Land/sea mask	Land/sea mask, Measurement time and sensor zenith angle	Land/sea mask (common for all products) Measurement time and sensor zenith angle

Table 4.2: Consolidated user requirements for SWE (right column) compared to the *snow_cci* Phase 1 and anticipated Phase 2 products specifications. Green highlighted text indicates agreement between requirement and specification. Yellow highlighted text indicates further development required to meet requirement.

	Snow Water Equivalent Phase 1 Specifications	Snow Water Equivalent Phase 2 Specifications	Snow Water Equivalent User Requirements
Description	SWE in mm	SWE in mm	SWE in mm
Spatial Coverage	Northern hemisphere non- mountain areas (without Antarctica and all of	Northern hemisphere non- mountain areas (without Antarctica and all of Greenland)	Northern Hemisphere
	Greenland)	Development of mountain area product within Option 7	Add mountain areas if possible
Grid Spacing	25 km	12.5 km	Improve grid spacing when possible
Map Projection	Geographic Grid (Lat/Lon)	Geographic Grid (Lat/Lon)	Geographic Grid (Lat/Lon)
Period	1979 – onwards	1979 – onwards	1979 – onwards
Frequency	Daily	Daily Monthly	Daily Monthly
Spatial Aggregation	None	None	Development of a synergistic SCF+SWE product
Update frequency	Annual	Annual	Annual for climate Sub-daily for NRT (Note: NRT services are not the aim of <i>snow_cci</i>)
Coding	8-bit (0-255)	8-bit (0-255)	8-bit (0-255)
Format	netCDF	netCDF	netCDF
Accuracy	20-30% RMSE	20-30% RMSE	10-25%
Uncertainty Metric	Unbiased RMSE	Unbiased RMSE	Unbiased RMSE – requires update
Alpine Filling	None	None Under development in Option 7	Separate product with alpine filling and associated flagging
Weather Station Consistency	Evaluated consistency criteria	Basic filtering and consistency criteria	Filtering and consistency to ensure time series homogeneity
Data Access	CCI data portal (includes ftp)	CCI data portal (includes ftp)	CCI data portal, Obs4MIPs and ESMValTool
Metadata	Land/sea mask	Land/sea mask	Update complex topography mask

The majority of climate user requirements are met by the products, with continued development in forthcoming years to address remaining improvements. Note that user requirements for NWP cannot be met within the scope of *snow_cci*.

The year to year evolution of *snow_cci* algorithms, processing, products, and associated user needs feeds into updates of the URD. This process captures progress in the *snow_cci* product specifications, and how they align with evolving user requirements. The user community is continually engaged via the CRG, through other CCI projects, and through the *snow_cci* user group. A third snow_cci user workshop will be planned later in Phase 2, to re-engage the community update the user requirements. In advance of this consultation, priority product development areas have emerged:

1. Development of a homogenized multi-sensor SCF dataset.

2. Ensure delivery of products to Obs4MIPS and ESMValTool.

3. Update and improve the uncertainty data layer for the SCF and SWE products, including a consistent approach to SCF uncertainty across AVHRR and MODIS products.

4. Development of a spatially aggregated 0.1 degree SCF product to facilitate a fully synergistic SCF and SWE datasets for consistent analysis of trends and evaluation of climate model simulations.

5. Further research into developing a SWE product for mountain regions.

5. REFERENCES

- Hall D., G. Riggs, J. Foster, and S. Kumar. 2010. Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sensing of Environment. 114: 496–503.
- Mortimer, C., L. Mudryk, C. Derksen, M. Brady, K. Luojus, P. Venäläinen, M. Moisander, J. Lemmetyinen, M. Takala, C. Tanis, and J. Pulliainen. 2022. Benchmarking algorithm changes to the Snow CCI+ snow water equivalent product. Remote Sensing of Environment. DOI: 10.1016/j.rse.2022.112988.
- Mudryk, L. R. and C. Derksen. 2017. CanSISE Observation-Based Ensemble of Northern Hemisphere Terrestrial Snow Water Equivalent, Version 2. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. <u>http://dx.doi.org/10.5067/96ltniikJ7vd</u>.
- Pulliainen, J., K. Luojus, C. Derksen, L. Mudryk, J. Lemmetyinen, M. Salminen, J. Ikonen, M. Takala, J.
 Cohen, T. Smolander, and J. Norberg. 2020. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature. DOI: 10.1038/s41586-020-2258-0.
- Wrzesien, M., M. Durand, T. Pavelsky, S. Kapnick, Y. Zhang, J. Guo, and C. K. Shum. 2018. A new estimate of North American mountain snow accumulation from regional climate model simulations. Geophysical Research Letters. 45: 1423–1432. https://doi.org/10.1002/2017GL076664

