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Interim Progress Report on WP5.8: 
Using Machine Learning to Evaluate and Understand our Capability 

to Model Tropical Wetland Methane Emissions 

 
 

 

1. Purpose and scope of this report 
 
This document summarises the progress on WP5.8 (“Using Machine Learning to Evaluate and 
Understand our Capability to Model Tropical Wetland Methane Emissions”) of the CCI CMUG 
project. The study aims to enhance our understanding of tropical wetland methane emissions 
and derive useful insights to help us improve the models. This activity has a strong technical 
element, with the use of machine-learning emulators of land surface model JULES combined 
with CCI satellite-based datasets in an innovative model-data fusion approach. The emulators 
are thus used to generate a new dataset, which is evaluated against atmospheric inversions of 
GHG-CCI data, and to leverage the benefits of explainable AI to explore how the input data 
drive the resulting model output.  
 
There are three partners involved in this activity: the University of Leicester lead the project 
and are in charge of emulator development and testing; the Met Office are responsible for the 
JULES simulations; and the University of Edinburgh are responsible for the atmospheric 
methane inversions.  
 
We report here the progress on the following tasks: 

- Production of ensemble of JULES wetland methane simulations. 

- Initial steps in emulator development.  

- Considerations for the use of CCI datasets with the emulator, including dataset selection, 
gap filling and best practices.  

 
 

 

Figure 1. Project structure diagram. 
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2. WP5.8.1 Land Surface Model Simulations 
 
The aim of this work package is to generate an ensemble of JULES wetland methane 
simulations focused over tropical Africa, covering a wide range of configurations and input 
data, that we can use for training and testing the emulator.  

2.1 The JULES model 

 
JULES (Joint UK Land Environment Simulator; Clark et al, 2011; Best et al, 2011; Gauci et al 
2021) is a land surface model which models the carbon, energy and water cycles. It has a simple 
groundwater model that simulates a grid box mean water table depth, which, when combined 
with the grid box statistical distribution of topographic index, simulates the distribution of water 

table within the grid box and thus the fraction of inter-fluvial inundation, 𝑓𝑤. 
 

JULES simulates the methane emitted (𝐹𝐶𝐻4) from the inundated fraction of the grid box. The 

default version of JULES used applies one of the following equations depending on whether 
soil carbon (Cs) or root exudates (which are assumed to be proportional to net primary 
productivity (NPP)) are assumed to be the available substrate for methanogenesis: 
 

𝐹𝐶𝐻4(𝐶𝑠) = 𝑓𝑤.𝐾𝑐𝑠. 𝐶𝑠. 𝑄10(𝐶𝑠, 𝑇)
(
(𝑇−𝑇𝑜)

10 )
 

𝐹𝐶𝐻4(𝑁𝑃𝑃) = 𝑓𝑤. 𝐾𝑛𝑝𝑝.𝑁𝑃𝑃. 𝑄10(𝑁𝑃𝑃, 𝑇)
(
(𝑇−𝑇𝑜)
10 )

 
 
where T (K) is the mean top 1 m soil temperature and To a reference temperature (273.16 K), 

𝐾𝑐𝑠 and 𝐾𝑛𝑝𝑝 are global constants tuned to produce an appropriate global total wetland flux and 

the Q10 factors describe the amounts by which reaction rates increase with a 10 K temperature 

increase. Here 𝑄10(𝑁𝑃𝑃, 𝑇) = 𝑄10(𝑁𝑃𝑃)(
𝑇𝑜

𝑇
)
. 

 
All the simulations carried out so far have calculated the methane emissions based on root 
exudates/NPP. 
 

2.2 Forcing and ancillary data (WP5.8.1.1) 

 
JULES is forced with observation-based meteorology, and requires sub-daily near-surface air 
temperature, wind speed and humidity, and short‐wave and long‐wave radiation, and 
precipitation. It also requires land ancillary data for soil properties and topographic index 
(Marthews et al., 2015), as well as LAI and canopy height (as we are fixing vegetation cover in 
these simulations) and spatial maps of the vegetation fractions for the different plant functional 
types. 
 
Two different historical observational datasets are considered: CRU/CRU-JRA55 (Harris, 
2014) and GSWP3-W5E5 (Dirmeyer et al., 2006; Kim 2017; Lange, 2019; Cucchi et 849 al., 
2020). 
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The fractions of the JULES plant functional types (PFTs) are produced from the aggregation of 
land cover types into surface tile types from International Geosphere-Biosphere Programme 
(IGBP) maps (Section 2.1). LAI and canopy height are prescribed based for each plant 
functional type. 
 
Standard JULES uses sand-silt-clay percentages from the Harmonized World Soil Database 
(FAO 2012) to describe the hydraulic soil properties for most soils (Best et al 2011). However, 
these formulations do not represent heavily leached, tropical, kaolinitic soils well (Tomasella 
& Hodnet, 1997). This is due to the micro-aggregation of their soil particles resulting in a hybrid 
behaviour, with the properties of both sand and clay. Some of our JULES simulations use soil 
ancillaries which have been generated to include these tropical soils. The Harmonized World 
Soil Database is used to determine in which grid boxes these soils (oxisols and/or ultisols – 
USDA soil taxonomy) are dominant. In these grid boxes the formulae developed in Tomasella 
& Hodnet (1998) are applied to generate the soil properties. 
 

2.3 JULES simulations (WP5.8.1.2) 

 
Table 1 shows the ensemble of JULES simulations carried out, and Figures Figure 2 and Figure 
3 show example maps of average wetland fraction and methane emissions, respectively, for 
June 2016, generated for all ensemble members. Simulation 1 is taken as the control. Simulation 
2 is carried out to investigate how JULES responds to different driving data and uncertainty in 
the observational driving data. 
 
Temperature is a key driver of wetland methane emissions but there is significant uncertainty 
in Q10 (Gedney et al., 2019). Simulations 3 and 4 investigate the temperature sensitivity to 
methane production and its likely lower and upper bounds (Gedney et al., 2019). Incorporation 
of oxisols and ultisols dramatically impacts the water table depth and therefore the inundation 
extent, which is another key factor controlling emissions. Simulations 5 & 6 investigate the 
importance of including these different soil hydraulic properties. 
 
Priorities for the next set of simulations could include looking at the impact of using soil carbon 
as the methane substrate rather than root exudates, different parameterisation in the soil 
hydrology module and potentially more complex wetland methane emission models. 
 

Table 1. Ensemble of JULES simulations produced for this study. 

Sim. No. Sim. ID Forcing data 𝑸𝟏𝟎 Soil properties 

1 u-dc921 GSWP3 𝑄10(𝑁𝑃𝑃) =1.6 Standard soils: sand-silt-clay 

2 u-dc910 CRUJRA 𝑄10(𝑁𝑃𝑃) =1.6 Standard soils: sand-silt-clay 

3 u-de834 GSWP3 𝑄10(𝑁𝑃𝑃) =2.3 Standard soils: sand-silt-clay 

4 u-de835 GSWP3 𝑄10(𝑁𝑃𝑃) =1.3 Standard soils: sand-silt-clay 

5 u-ck917 GSWP3 𝑄10(𝑁𝑃𝑃) =1.6 Includes oxisols 

6 u-ck843 GSWP3 𝑄10(𝑁𝑃𝑃) =1.6 Includes oxisols and ultisols 
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Figure 2. Example wetland fraction generated in the JULES ensemble of simulations. 

 
 

 

 

Figure 3. Example wetland methane emissions generated in the JULES ensemble of 
simulations. 
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3. WP5.8.2 Emulator Development 
 
The aim of this work package is to develop a machine-learning emulator of wetland methane 
from JULES and to leverage its explainable AI capabilities to better understand the model 
behaviour. This work builds on previous GPP and soil moisture emulators that we developed 
successfully. 
 

3.1 Python framework to streamline emulator development 

 
Previous work on JULES emulators involved many manual steps, from the data pre-processing 
to the feature selection, hyperparameter tuning and visualisation, which makes development 
slow, cumbersome and harder to keep track of iterations. To automate and streamline emulator 
development, we are building a Python framework, which is modular and model agnostic, and 
will have capabilities such as automated feature selection to find the most optimal set of input 
features. 
 

 

Figure 4. Flow diagram of the emulator development framework. 

 

3.2 Wetland methane emulator development 

 
Emulator development is currently ongoing. We have completed some preparatory work to pre-
process the data from the JULES simulations, including converting them into the right format 
for the emulators and applying scaling factors. The plan is to create two emulators as a two-
stage approach: one for wetland extent, and one for wetland methane. Both parameters are 
intrinsically related and of interest in their own right to answer the wetland science questions. 
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The emulators are built using a decision-tree based algorithm known as gradient boosting, for 
which we use the XGBoost implementation in Python (Chen and Guestrin, 2016). This 
algorithm is very popular in data science owing to its flexibility and high performance in a wide 
range of applications. It works by combining multiple weak models to create a stronger model. 
In this study, the selection of hyperparameters is based on the tuning we performed as part of 
our work on previous emulators, and might need slight adjustments for optimal performance in 
this particular application. 
 
An optimal feature selection is critical for good emulator performance. We start by selecting all 
the available features that might be relevant for the target variable (e.g. wetland methane), based 
on our knowledge of the physical processes involved. The initial feature set can be optimised 
at a later stage to remove inputs that provide redundant information, for example, those which 
are highly correlated to other inputs. Though largely a ‘trial-and-error’ exercise, the feature 
selection optimisation can be partly guided by a feature importance analysis, which provides a 
summary of which inputs were more relevant in determining the output. 
 
We have started building an emulator of wetland extent and are currently working on the input 
feature selection. Some of the inputs we have tried so far include: precipitation, surface 
pressure, specific humidity at 1.5m height, topographic index, total soil moisture in column, 
etc. However, because the emulator is point-based (each simulated data point is independent of 
the rest in time and space) it does not have any ‘memory’, which means that we are missing 
some important information such as the recent precipitation history. To work around this 
limitation, we are engineering additional features derived from other inputs, such as monthly 
means or lagged parameters. 
 

3.3 Next steps 

 
We will continue working on the feature selection for the wetland extent emulator, adding some 
derived inputs such as multiple lagged precipitation variables. We expect this task to be lengthy 
and to go through several iterations. 
 
The next step is to start work on the wetland methane emulator, following a similar process to 
the wetland extent one, including the feature selection.  
 
Once the emulators are finalised, we will also explore explainable AI techniques like SHAP 
(SHapley Additive exPlanations; Lundberg and Lee, 2017) to learn what influence the different 
inputs have on the output. This analysis will help us better understand the factors affecting 
particular predictions of wetland extent or methane emissions, and may also lead to 
improvements in JULES. 
 
 
  



CMUG CCI+ Deliverable  
Number:  D2.0h Interim Progress Report on WP5.8 

Submission date:   29 November 2024 

Version:  1.0 

 
 

9 of 14 

4. WP5.8.3 CCI Data-Driven Emulation 
 
The aim of this work package is to generate a new dataset of wetland methane emissions by 
driving the emulator developed in WP5.8.2 with ESA-CCI datasets (e.g. land surface 
temperature), along with an associated characterisation of the uncertainty. 
 

4.1 Data pre-processing preparation 

 
Model vs observational variables 
 
To be able to use observations as inputs, they must be equivalent to the model variables the 
emulator was trained on. For example, JULES surface temperature (tstar) can be considered 
equivalent to the land surface temperature (LST) observed by satellites, so an emulator trained 
on tstar can be used with LST data. The observational variables also must have a similar 
distribution to their JULES counterparts to ensure the emulator training covers the whole range 
of possible values. Therefore, careful consideration needs to be taken for all input features 
during the feature selection process to ensure there is a suitable observational equivalent, taking 
into account the different assumptions that might have been made in the model compared to the 
observational datasets.  
 
 
Resolution and grids 
 
Different EO datasets will typically have different spatial and temporal resolutions compared 
to each other (and to JULES), and be sampled on different grids. However, all datasets used for 
training and running the emulator must have the same spatial and temporal resolutions and 
grids, so harmonisation of all datasets is needed. Our approach is to select a resolution (e.g. 
daily, 5 km) and upsample or downsample datasets as required, typically using nearest 
neighbours for upsampling, and averaging for downsampling.  
 
In theory, the emulator can be trained on data at any spatiotemporal resolution, provided the 
processes of interest are well represented at that resolution. Then the emulator can be used with 
EO inputs at a different resolution to the JULES data used for training. This relative 
independence from resolution allows us to train the emulator using coarser (and thus less 
computationally intensive) JULES simulations, and benefit from the higher resolution of the 
EO data. 
 
 
Gap filling 
 
Remote sensing data can sometimes be rather sparse owing to factors such as cloud cover or 
quality filtering. However, the emulator requires all input variables to be able to make 
predictions, which means that, even if there is a single input missing, it will not generate an 
output. Therefore, to maximise the number of predictions, it is necessary to carry out some gap 
filling. In previous work with a similar emulator, we performed some basic gap filling by doing 
temporal linear interpolation, with a maximum gap of 30 data points. Figure 5 shows an 
example of one day of ESA CCI soil moisture data over Europe where observations are very 
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sparse (Figure 5a), and the resulting data after gap filling (Figure 5b), with much improved 
coverage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Land cover classes to PFT conversion: crosswalk table 
 
One of the EO datasets that we will be using in this study is the ESA CCI Land Cover product. 
However, the land cover classes used in the CCI product (the Land Cover Classification System, 
LCCS) are not directly equivalent to JULES’ PFTs, so we need to define a crosswalk table to 
convert between them. When creating such a table, assumptions need to be made which will 
inevitably amplify uncertainties. For example, JULES has six different types of grasses, 
including the differentiation between C3 and C4, which are not present in LCCS. In a crosswalk 
table we created for a previous emulator (Figure 6, adapted from Poulter et al., 2015), we 
divided the LCCS grass fractions equally among the six JULES grass PFTs. Other assumptions 
include the exclusion of certain types of vegetation not present in the study domain (e.g. tropical 
trees in Europe).  
 
Since we created the crosswalk table in Figure 6, there have been new efforts to map LCCS to 
PFTs (e.g. Wang et al., 2023) that might help refine our table for this study. In addition, a new 
CCI land cover product that uses PFTs instead of LCCS classes will become available soon, as 
explained by Céline Lamarche at the Mid-Term Review meeting for this activity. This new 
product can potentially be very useful for this study and we will include it in the list of datasets 
to consider in this work package when the emulator is finalised. 

Figure 5. Example of gap filling for CCI soil moisture dataset for 22/02/2009:             
a) Original data. b) Gap-filled data. Some gaps remain where there are more than 30 

missing data points between observations, but coverage is much improved.  

a) b) 
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Figure 6. Snippet of the crosswalk table used with previous emulators, which was adapted 
from Poulter et al. (2015). 

 
Discussion with CCI product leads 

 
EO datasets are complex, involve many assumptions, and multiple versions might be available. 
To ensure we use the most suitable EO products, and that they are used correctly, we engaged 
with the science leads for key CCI products that we anticipate will be needed in this study. 
Leads for soil moisture, land cover, greenhouse gases (GHG), and land surface temperature 
(LST) attended our Mid-Term Review meeting on 11th of November 2024 and provided updates 
on their products, as well as helpful information and advice for our project. 
 
Michael Buchwitz, from CCI-GHG, recommended using the CH4_S5P_WFMD (v1.8) product, 
and clarified that potential biases from low-albedo wetland areas and spurious methane signals 
are being addressed and there would be further improvements in early 2025. 
 
Darren Ghent, from CCI-LST, explained that the best products are those from a single sensor, 
especially MODIS and SLSTR, and they should be used when possible. He also mentioned that 
his team do sophisticated gap filling on the LST data as an intermediary step for downscaling, 
taking into account land cover, and even though this gap-filled product is not publicly available, 
they can share it with us when needed.  
 
Wouter Dorigo, from CCI-Soil Moisture, mentioned that there is a new version of the product, 
covering 45 years of data. He explained that they produce a dataset version that has been gap 
filled using a sophisticated machine-learning technique, though most of the filling taking place 
in northern regions, where data quality is poorer.  
 
Céline Lamarche, from CCI-Land Cover, highlighted that there is a new version of the product 
that uses PFTs instead of LCCS classes, which is a much better solution to the LCCS-PFT 
mapping than the crosswalk table we have used in the past (Figure 6).  

TOTAL

0 1 2 3 4 5 6 7 8 9 10 11 12

Broadleaf 

Deciduous

Broadleaf 

Evergreen 

Tropical

Broadleaf 

Evergreen 

Temperate

Needleleaf 

Deciduous

Needleleaf 

Evergreen
C3 grasses

C3 grasses 

crops

C3 grasses 

pastures
C4 grasses

C4 grasses 

crop

C4 grasses 

pastures

Shrubs 

Deciduous

Shrubs 

Evergreen
Urban

Inland 

water
Bare soil Land-ice

0 no_data 0

10 cropland_rainfed 16.67 16.67 16.67 16.67 16.67 16.67 100

11
cropland_rainfed_herbace

ous_cover
16.67 16.67 16.67 16.67 16.67 16.67 100

12
cropland_rainfed_tree_or_

shrub_cover
8.33 8.33 8.33 8.33 8.33 8.33 50 100

20 cropland_irrigated 16.67 16.67 16.67 16.67 16.67 16.67 100

30 mosaic_cropland 5 5 12.50 12.50 12.50 12.50 12.50 12.50 5 10 100

40 mosaic_natural_vegetation 5 5 10.83 10.83 10.83 10.83 10.83 10.83 10 15 100

50
tree_broadleaved_evergre

en_closed_to_open
90 5 5 100

60
tree_broadleaved_deciduo

us_closed_to_open
70 2.50 2.50 2.50 2.50 2.50 2.50 15 100

61
tree_broadleaved_deciduo

us_closed
70 2.50 2.50 2.50 2.50 2.50 2.50 15 100

62
tree_broadleaved_deciduo

us_open
30 5.83 5.83 5.83 5.83 5.83 5.83 25 10 100

70
tree_needleleaved_evergre

en_closed_to_open
70 2.50 2.50 2.50 2.50 2.50 2.50 5 10 100

71
tree_needleleaved_evergre

en_closed
70 2.50 2.50 2.50 2.50 2.50 2.50 5 10 100

72
tree_needleleaved_evergre

en_open
30 5.00 5.00 5.00 5.00 5.00 5.00 5 5 30 100

80
tree_needleleaved_decidu

ous_closed_to_open
70 2.50 2.50 2.50 2.50 2.50 2.50 5 10 100

81
tree_needleleaved_decidu

ous_closed
70 2.50 2.50 2.50 2.50 2.50 2.50 5 10 100

JULES other typesC3S LCCS dataset JULES PFTs

lc_type lc_name
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The discussion was very productive and CCI science leads provided useful recommendations 
and advice that will be instrumental in this work package. We learned about new products and 
developments that will improve essential steps in our data processing, such as gap filling and 
LCCS-to-PFT mapping. We will continue to engage with the data providers throughout the 
project to ensure we apply best practices when using their data. 
 

4.2 Next steps 

 
Although we have started some preparatory work to understand the various EO datasets 
available and how to use them, the main part of this work package requires the output of 
WP5.8.2, that is, the trained emulators. Once we generate them, the next steps will be to: 

- Finalise the list of EO datasets required.  

- Continue the conversation with the data producers. 

- Define common spatial and temporal resolutions to harmonise the datasets. 

- Perform data pre-processing and harmonisation. 

- Drive emulators with pre-processed EO datasets. 

- Propagate uncertainty from EO datasets through emulator to estimate overall 
uncertainty of predictions for wetland extent and methane emissions. 

- Perform flux inversions of the CCI-GHG methane data and evaluate JULES and EO-
driven emulator against them (WP5.8.4). 

 

5. Summary 
 
The aim of this activity is to gain a better understanding of drivers and responses of tropical 
wetland methane emissions by using a machine-learning emulator of the JULES land surface 
model trained across a wide ensemble of simulations and leveraging explainable AI capabilities. 
The activity involves colleagues from University of Leicester, University of Edinburgh, and the 
Met Office.  
 
Progress so far includes the generation of six JULES ensemble members covering a range of 
scenarios with different driving data and wetland-related parameter settings; the development 
of a Python framework for automated emulator training and testing; initial work on feature 
selection and engineering for a wetland extent emulator; and preliminary work on EO data 
selection and usage considerations, including a very fruitful discussion with ESA CCI science 
leads for LST, GHG, soil moisture and land cover. 
 
Next steps include the generation of further JULES ensemble members with more complex 
scenarios and emissions models; further work on emulator feature selection, engineering and 
training; analysis of emulator outputs using explainable AI; generation of new datasets using 
the emulator and the EO data; and evaluation of our data against flux inversions of CCI-GHG.  
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7. Glossary 
 
 

Acronyms  

AI Artificial Intelligence 

CCI Climate Change Initiative 

CMUG Climate Modelling Users Group 

GHG Greenhouse Gases 

GPP Gross Primary Productivity 

JULES Joint UK Land Environment Simulator 

LCCS Land Cover Classification System 

LST Land Surface Temperature 

ML Machine Learning 

NPP Net Primary Productivity 

PFT Plant Functional Type 

SHAP SHapley Additive exPlanations 
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