
 

 

 

 

 

 

 

ESA Climate Change Initiative – Fire_cci 

D2.2.2 Algorithm Theoretical Basis Document (ATBD) – 
Small Fires Dataset – Long Term Pilot Sites (SFDL) 

 

 

 

 

Project Name ECV Fire Disturbance: Fire_cci  

Contract Nº 4000126706/19/I-NB 

Issue Date 18/12/2023 

Version 1.2 

Author Amin Khairoun, Erika Solano 

Document Ref. Fire_cci_D2.1.4_ATBD_SFDL_v1.2 

Document type Public 

 

 

 

 

 

 

 

To be cited as: Khairoun, A., Solano, E. (2023) ESA CCI ECV Fire Disturbance: D2.2.2 
Algorithm Theoretical Basis Document-SFDL, version 1.2. Available at: 

https://climate.esa.int/en/projects/fire/key-documents/ 

https://climate.esa.int/en/projects/fire/key-documents/


 

 

Fire_cci 
Algorithm Theoretical Basis Document 

Small Fires Dataset Long Term 

Ref.: Fire_cci_D2.2.2_ATBD_SFDL_v1.2 

Issue 1.2 Date 18/12/2023 

Page 2 
 

Prime Contractor/ 

Scientific Lead & Project 

Management 

UAH – University of Alcala (Spain) 

  

Earth Observation Team 

UAH – University of Alcala (Spain) 

UPM – Universidad Politécnica de Madrid (Spain) 

CNR-IREA - National Research Council of Italy – Institute for 

Electromagnetic Sensing of the Environment (Italy) 

  

System Engineering  BC – Brockmann Consult (Germany) 

  

Climate Modelling Group 

CNRS - Laboratory for Sciences of Climate and Environment 

(France) 

VU - Vrije Universiteit Amsterdam (Netherlands) 
 

     

          

 

Distribution 

Affiliation Name Address Copies 

ESA Clément Albergel (ESA) clement.albergel@esa.int electronic copy 

Project 

Team 

Emilio Chuvieco (UAH) 

M. Lucrecia Pettinari (UAH) 

Amin Khairoun (UAH) 

Erika Solano (UAH) 

Consuelo Gonzalo (UPM) 

Dionisio Rodríguez (UPM) 

Ángel García Pedrero (UPM) 

Daniela Stroppiana (CNR) 

Thomas Storm (BC) 

Martin Böttcher (BC) 

Florent Mouillot (CNRS) 

Philippe Ciais (CNRS) 

Guido van der Werf (VUA) 

emilio.chuvieco@uah.es 

mlucrecia.pettinari@uah.es 

amin.khairoun@uah.es 

erika.solano@uah.es 

consuelo.gonzalo@upm.es 

dionisio.rodriguez@ulpgc.es 

angelmario.garcia@upm.es 

stroppiana.d@irea.cnr.it 

thomas.storm@brockmann-consult.de 

martin.boettcher@ brockmann-consult.de 

florent.mouillot@cefe.cnrs.fr 

philippe.ciais@lsce.ipsl.fr 

g.r.vander.werf@vu.nl 

electronic copy  

  

mailto:philippe.ciais@lsce.ipsl.fr


 

 

Fire_cci 
Algorithm Theoretical Basis Document 

Small Fires Dataset Long Term 

Ref.: Fire_cci_D2.2.2_ATBD_SFDL_v1.2 

Issue 1.2 Date 18/12/2023 

Page 3 
 

Summary 

This document describes the algorithm used for generating a long term Small Fire Dataset 

(SFDL) in three pilot sites across the world with data from the Landsat satellites covering 

from 1990 to 2019. 
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1 Executive Summary 

Fires emit greenhouse gases and aerosols, important climate forcing factors, which need 

to be estimated and modelled to understand better climate and carbon cycling. Fires are 

also a major factor in land cover change, and hence affect fluxes of energy and water to 

the atmosphere. In this context, spatial and temporal monitoring of trace gas emissions 

from fires is of primary importance. These can be inferred using both land-surface and 

atmospheric measurements, preferably in combination. The Fire Disturbance Essential 

Climate Variable provides baseline products for the land-surface to allow this. 

Burned area (BA), as derived from satellites, is considered the primary variable that 

requires climate-standard continuity. It can be combined with information on burn 

efficiency and available fuel load to estimate emissions of trace gases and aerosols. 

Measurements of BA may be used as direct input (driver) to climate and carbon cycle 

models or, when long time series of data are available, to parameterise climate-driven 

models for BA (GCOS, 2022).  

This document is the Algorithm Theoretical Basis Document (ATBD) corresponding to 

the generation of the long-term Small Fire Datasets for pilot sites in Amazonia, Sahel and 

Siberia extending from 1990 to 2019 at high-resolution (~30 m at the equator). The 

theoretical basis described here identifies the data sets that were used to classify burned 

area and the describes the methodology employed to derive the BA products.  

2 Introduction 

Common global BA products are based on coarse and medium resolution sensors (from 

250 to 1000 m). Therefore, the likelihood of detecting small burns (i.e., < 50 ha) is very 

low, and for this reason omission errors from these products may be quite high (Boschetti 

et al. 2019, Franquesa et al. 2022) particularly coming from small fires (Randerson et al. 

2012). In order to improve the characterisation of small fires, one of the objectives of the 

project is to generate a small fires datasets (SFD) based on high-resolution sensors (10 to 

30 m). Considering the enormous processing effort to cover the entire planet, this SFD 

dataset focuses on three areas of interest. The first SFD product generated, named 

FireCCISFD11, was produced within the Phase 2 of the FireCCI project and contained 

areas burned in 2016 in Sub-Saharan Africa (Roteta et al. 2019), while the second SFD, 

called FireCCISFD20, was generated in the same region but for 2019 (Chuvieco et al. 

2022). Both versions were based on Sentinel-2 data. In the current version of the SFD, 

we aim to focus more on the regions in-line with the High Resolution Land Cover (HRLC) 

CCI project and therefore the covered areas are parts of Amazonia, Africa and Siberia, 

for which long-term BA archives covering 30 years (1990-2019) based on Landsat 

imagery at 30 m were processed.  

Since coarse-resolution burned area detection algorithms require that a substantial 

fraction of an individual pixel’s area is burned for successful attribution (to avoid 

commission errors from other forms of land cover change), detection of small fires 

becomes difficult (Roy and Landmann, 2005). At a global scale, it has been shown that 
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accounting for small fires may increase burned area and global carbon emissions by 

approximately 35% (Randerson et al., 2012). At continental scale, the use of high-

resolution BA (for example FireCCISFD20 derived from Sentinel-2A and B) proved that 

omission (OE) and commission errors (CE) could be reduced to 8.5 and 15.0 %, 

respectively in comparison with medium resolution BA products such as FireCCI51 (OE 

= 49.3 % and CE = 24.9 %) and MCD64A1 (OE = 54.1% and CE = 20.9%) derived from 

MODIS (Chuvieco et al., 2022; Stroppiana et al., 2022). This improvement of accuracy 

especially in terms of omission errors led to significantly higher BA estimations (80% 

greater than FireCCI51 and 120 % larger than MCD64A1) over sub-Saharan Africa in 

2019. The first version of the SFD (FireCCISFD11), which was generated using a single 

Sentinel-2 satellite, estimated twice more fire emissions than MCD64A1 in 2016 over the 

same area and the underestimation of fire impacts using coarse-resolution BA products 

was mainly attributed to their high omission of small fires (Ramo et al., 2021).   

The capability of Landsat imagery to provide information on burned patches has been 

widely recognized in scientific literature due to its long temporal coverage (1984 

onwards), its high spatial resolution (30 m) and multispectral characteristics (covering the 

most important spectral areas for burned area mapping with one band in the near infrared 

and two in the shortwave infrared). Subsequently, several studies used Landsat data to 

derive BA at local to regional scale (Bastarrika et al., 2014; Bastarrika et al., 2011; 

Boschetti et al., 2015; Chuvieco et al., 2002).  Recent developments aimed to use the 

capabilities of the Google Earth Engine (GEE) cloud computing platform to generate 

long-term large scale burned area archives at national (Alencar et al., 2022) and large 

regional scales (Descals et al., 2022) and concluded that this platform provides a high 

potential of assessment of BA trends at these scales once it is used efficiently. Currently, 

the only global BA product using high-resolution data is called GABAM (Long et al. 

2019), extending over the entire time series of Landsat until 2021. Yet, this product 

manifests several discrepancies. In fact, it shows a large amount of omissions (Roteta et 

al. 2021b) even higher than coarse-resolution BA products, which explains the reason 

why it detects less than 4 Mkm2 of BA yearly (Wei et al., 2021), lower than the 

estimations of the two previous versions of SFD in Africa alone (≥ 4.8 Mkm2). 

Additionally, this global product indicates solely the year of the fire, with no attribution 

of the burning date. 

The aim of this version of the SFD (FireCCISFDL10 in the rest of the document) is to 

develop a consistent time series database of areas burned in small fires in the three regions 

above mentioned. For doing that, we rely primarily on Landsat data, as it is the longest 

time series sensor currently available. Since the time series of FireCCISFDL10 starts in 

1990, it was not possible to apply the same methods used in our FireCCISFD20 product, 

as this latter dataset relies on active fires and these products were either not available or 

highly uncertain before the MODIS era (pre-2000). For this reason, we have adapted the 

Burned Area Mapping Tools (BAMT) developed by Roteta et al. (2021a) in GEE. We 

have enhanced its performance and optimised the different components of the algorithm 
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in order to develop a long-term archive of BA based on the Landsat imagery archive in 

three large-scale pilot sites, namely Amazonia, eastern Sahel and Siberia. 

We were studying different options to include Sentinel-2 data in the time series, but all 

of them were unsatisfactory to obtain a consistent output. As consistency is the critical 

element of this activity, we have finally decided to generate a separate dataset with 

Sentinel-2 data for the most recent years, for intercomparison purposes. We will rely for 

this activity on the algorithm developed by Roteta et al. and described in the 

FireCCISFD20 description paper. 

3 Data and Methods 

3.1 Pilot sites location 

The selection of pilot sites for the generation of long-term BA SFD dataset was based on 

those selected for the ESA HRLC CCI project, following the recommendations of its 

Climate User Group, which determined three large pilot areas (see Figure 1) of particular 

interest to study the climate/land cover feedbacks. These areas cover 3 different 

continents, climate (tropical, semi-arid, boreal) and present complex surface atmosphere 

interactions that have significant impacts not only on the regional climate but also on 

large-scale climate structures. Limited large-scale information about these ecosystems is 

available at high-resolution to provide an accurate assessment of surface-atmosphere 

interactions. For this reason, the understanding of their associated vegetation-atmosphere 

feedbacks are still poorly captured by state-of-the art earth system models, which 

engender major uncertainties in the research studies aiming to track their history and/or 

predict their future evolution. Additionally, these regions are critical for the global carbon 

cycle through the uptake of carbon by terrestrial ecosystems as they encompass major 

biomes that are vulnerable in terms of land carbon stocks (tropical forest, permafrost) 

(ESA, 2020a) and desertification processes along with their unfolding resources’ 

sustainability challenges. 

The processing regions were limited to the extent in which dynamic HRLC maps are 

generated within the HRLC CCI project. The three key study areas are described below 

(ESA, 2020b): 

Amazonia: (24°S - 12°S; 47°W - 62°W) 

The first region involves the Amazon basin, which has for several decades focused the 

attention of the scientific community due to large deforestation rates and potential 

associated large-scale climate impacts. This region extends over a variety of ecosystems 

including tropical and subtropical savannas (Cerrado) and broadleaf forests, as well as 

the world’s largest tropical wetland (Pantatal). Agricultural expansion and climate 

variability have become important agents of disturbance in the Amazon basin, mainly in 

the southern and eastern portions. Although Amazonian forests have considerable 

resilience to moderate annual drought, the interactions between deforestation, fire and 

drought potentially lead to losses of carbon storage and changes in regional precipitation 
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patterns and river discharge with some signs of a transition to a disturbance-dominated 

regime.  

Sahel: (4°N - 16°N; 27°E - 43.5°E) 

The second area of interest is the eastern part of the Sahel band in Africa covering more 

or less the Horn of Africa region. This region is dominated by arid and semi-arid 

ecoregions such as tropical, subtropical and montane savannas. Additionally, it includes 

Africa’s largest tropical wetland (Sudd grasslands). Eastern Sahel represent one of the 

most vulnerable regions to climate-related risks characterised by highly variable and 

irregular rainfall together with rising temperatures, which results in more disastrous and 

frequent drought and flood events in recent years. However, the impact of El Niño-

Southern Oscillation cycle (ENSO) in the initiation of dramatic drought events in this 

region is still inadequately understood due to the lack of studies compared with Western 

Sahel, and therefore deserves more study to enhance the predictions of future changes 

and their consequences on regional climate and on the sustainable development of the 

population, particularly in terms of food and water security. 

Siberia: (60°N - 74°N; 65°E - 86°E) 

The third region is located in the northern high latitudes, for which future climate changes 

are expected to be particularly strong, a phenomenon known as polar amplification, which 

was clearly affecting the fire regime and its consequences (Descals et al., 2022; Zheng et 

al., 2023). In Siberia, complex climate feedbacks over land, implicating natural and 

human factors, may further amplify these changes and make this region a possible hot 

spot of future climate changes. Siberia represents 10% of the land surface, 30% of 

forested surfaces globally, and hosts the largest peatland basin worldwide. The warmer 

temperatures (Hantemirov et al., 2022) and increased winter rainfall have promoted 

increases in biosphere activity and longer active seasons. Land cover (LC) changes have 

been reported with the displacement of the forest-shrubs-grasslands transition zone to the 

north. In addition, changes in LC may impact directly the fate of the carbon stored in 

permafrost, which in turn will affect long-term terrestrial carbon balance and ultimately 

climate change, especially under the alarming increase of early snowmelt together with 

an anomalous Arctic front jet observed during the recent years (Scholten et al., 2022). 
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Figure 1. Location of the 3 regions covered by the long-term high-resolution BA record (30 years). 

3.2 Input datasets and pre-processing 

3.2.1 Landsat surface reflectance 

The Landsat program is a NASA/USGS programme for satellite imagery acquisition and 

Earth observation, with a series of satellites that started acquiring images in 1972 with 

Landsat-1, being the last satellite launched in late 2021 (Landsat 9), and millions of scenes 

of the Earth having been acquired since then. From its eight satellites, only Landsat-4 and 

-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic Mapper Plus (ETM +) and 

Landsat-8 Operational Land Imager (OLI) data are used in this SFD. They provide 

continuous global coverage since 1982, acquiring images every 16 days (reduced to 8 

days in years where two satellites are operational) at 30 m of spatial resolution and 

covering the visible, near infrared (NIR) and short wavelength infrared (SWIR) spectral 

regions. From all available Landsat products in GEE, the Collection 2 (C2) of Landsat 

Tier 1 Surface Reflectance (SR) product was the one selected. It includes atmospherically 

corrected and orthorectified surface reflectance data for four visible and near-infrared and 

two short wavelength infrared bands. These products are represented by the following 

IDs in GEE: “LANDSAT/LT04/C02/T1_SR” for Landsat-4 TM, 

“LANDSAT/LT05/C02/T1_SR” for Landsat-5 TM, “LANDSAT/LE07/C02/T1_SR” for 

Landsat-7 ETM+ and “LANDSAT/LC08/C02/T1_SR” for Landsat-8 OLI (Roteta et al., 

2021a). Surface reflectance of Landsat 4 to 7 is derived using the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) algorithm, while Landsat 8 uses the 

Land Surface Reflectance Code (LaSRC). Six reflectance bands common to all three 

sensors (TM, ETM + and OLI) are employed: the three visible colours (blue, green and 

red), the NIR and two short wavelength infrareds (short and long SWIRs). Each of these 

bands’ wavelengths may vary among different sensors, but they cover an equivalent 

region in the spectrum (Table 1). Landsat bands are available at 30 m spatial resolution. 
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Table 1. Selected bands for every Landsat satellite and sensor, and their approximate wavelengths. 

 Landsat-4 / 5 Landsat-7 Landsat-8 / 9 
Approximate 

Wavelength (µm) 

Sensor TM ETM+ OLI - 

Blue B1 B1 B2 0.45-0.52 

Green B2 B2 B3 0.53-0.59 

Red B3 B3 B4 0.63-0.68 

NIR B4 B4 B5 0.80-0.89 

Short SWIR B5 B5 B6 1.55-1.70 

Long SWIR B7 B7 B7 2.10-2.30 

3.2.2 Ancillary Datasets 

3.2.2.1 Quality assessment band masking 

The Quality Assessment (QA) band for Landsat sensors has been used to identify pixels 

that exhibit adverse instrument, atmospheric or superficial conditions. The PIXEL_QA 

band is generated using the Function of Mask (FMask) algorithm and presented in a bit-

packed form for Landsat images. In our case, pixels showing the presence of clouds, cloud 

shadows, cirrus or snow were masked out (Table 2). 

Table 2. Bit Values and conditions applied for masking of Landsat data. 

QA bit State 

2 Cirrus 

3 Clouds 

4 Cloud shadows 

5 Snow 

3.2.2.2 Active fire products 

Most of BA algorithms rely on active fires to check that the spectral/temporal changes 

detected in the images are due to fire, where they are used as seeds before applying 

growing processes. In the case of the FireCCISFDL10 BA algorithm, times series extends 

beyond the coverage of existing active fire data archives (which starts in November 2000 

in the case of MODIS) and the use of other proxies to create seeds was required. BA 

detection in FireCCISFDL10 is independent of active fires.  

Still, they were used to enhance fire detection dates in the case of Siberia where image 

acquisitions are limited because of frequent cloud coverage. For that purpose, we used 

the Collection 2 of the VNP14IMGML product derived from the Suomi National Polar-

orbiting Partnership Visible Infrared Imaging Radiometer Suite sensor (S-NPP/VIIRS) at 

375 m spatial resolution from 2012 onward, whereas the period 2001-2011 was enhanced 
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using the Collection 6.1 of MCD14DL hotspots derived from MODIS at 1 km spatial 

resolution (from Aqua and Terra satellites jointly). Both datasets are downloaded from 

the NASA FIRMS platform (https://firms.modaps.eosdis.nasa.gov/download/, last 

accessed in October 2023). 

3.2.2.3 Land cover information 

The FireCCISFDL10 pilot sites were selected to fit the regions for which long-term 

dynamic land cover maps were generated within the HRLC CCI project. This project 

provides to the climate community land cover maps at the resolution of 10-30 m of 

Amazonia, Sahel and western Siberia. The main sources of information include Sentinel-

2 and Landsat for optical imagery and Sentinel-1 for radar data (ESA, 2020a). These maps 

served to mask burnable land cover types and to assign the land cover of each burned 

pixel. A full description of the different land cover types is shown in Table 3. 

Table 3. Burnable land cover types in HRLC CCI maps  

Value LC type description Burnable  

0 No data  

10 Tree cover evergreen broadleaf x 

20 Tree cover evergreen needleleaf x 

30 Tree cover deciduous broadleaf x 

40 Tree cover deciduous needleleaf x 

50 Shrub cover evergreen x 

60 Shrub cover deciduous x 

70 Grasslands x 

80 Croplands x 

90 Woody vegetation aquatic or regularly flooded x 

100 Grassland vegetation aquatic or regularly flooded x 

110 Lichens and mosses x 

120 Bare areas  

130 Built-up  

140 Open water  

141 Open water seasonal  

142 Open water permanent  

150 Permanent snow and/or ice  

3.3 Burned area processing  

3.3.1 General overview of the algorithm 

The algorithm includes two phases: 1) the main phase of BA classification in Google 

Earth Engine platform (GEE) and 2) the post-processing and enhancement phase 

performed locally. The first phase aims to generate a BA vector map as well as its 

https://firms.modaps.eosdis.nasa.gov/download/
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corresponding ancillary layers (i.e., probability and Julian day of burn) in a user-defined 

area (each of our pilot sites) and period (defined based on image availability) via a 

supervised classification of temporal (pre- and post-periods) mosaics of Landsat data. 

Once these layers are generated, the post-processing stage is applied in order to enhance 

the burned patches’ shapes and eliminate salt and pepper effects. Additionally, in the case 

of Siberia, a burn date enhancement is applied. The general methodology flowchart 

illustrating the logic of the two stages is shown in  Figure 2. The processing code 

developed in the GEE code editor platform was then translated to Python API in order to 

optimise and automatize the different parts of the algorithm.  

 

 

Figure 2. Flowchart of the general overview of FireCCISFDL10 BA product. 
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3.3.2 Selection of processing periods 

In order to define the periods of processing two aspects are taken into account. The first 

is the number of double burns annually (pixels burning more than once at a year) on the 

one hand, and the availability of valid observations on the other hand. The Sahel region 

presents a significant risk of having double burns in a single year mainly due to the fire 

season that generally extends from November to March, and therefore a pixel that is 

burned in January and December of the same year is in fact burned in two different fire 

seasons. This behaviour was less observed in Amazonia as the main fire season extends 

from July to late October and few fires might occur outside this season (Figure 3).  

 

Figure 3. Fire seasonality across pilot sites using FireCCI51 time series. 

Thanks to the significant availability of reliable observations in Sahel and in Amazonia 

even in early 2000s, a two-period compositing strategy was considered (Figure 4). The 

initial period spans from April to September, while the subsequent one encompasses the 

months from October to March. In the 90s, only Landsat-5 was effectively operating 

while Landsat-4 had very few acquisitions. Therefore, yearly periods were used and again 

the season April to March was used in order to mitigate the likelihood of missing frequent 

fires in Sahel. In Siberia, fires are strictly observable from March to November and the 

fire season spans mainly from May (i.e., overwintering fires) to September (Figure 3), 

and therefore a single period was processed yearly from March to November. In the case 

of yearly periods, the difference between dates of compositing between pre- and post-

composites was also used as a predictor to capture double burns as long as the signal of 

burn is confident in both periods and the date difference is large (more than 6 months). 

The impact of the use of this variable is illustrated in Subsection 3.3.8.  
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Figure 4. Number of periods proposed in each zone in function of image availability: A) Sahel; B) 

Amazonia; C) Siberia.  

3.3.3 Spectral indices 

The normalized difference between the most important spectral spaces for BA detection 

was added to the selected spectral bands described in  

Table 1, as follows: Normalized Difference Vegetation Index (NDVI) in the Red/NIR 

space, Normalized Burned Ratio (NBR) in the NIR/Long SWIR and Normalized Burned 

Ratio 2 (NBR2) in the Long SWIR/Short SWIR space. The equations for these indices 

are: 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 

𝑁𝐵𝑅 =
𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅𝐿

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅𝐿
 

𝑁𝐵𝑅2 =
𝜌𝑆𝑊𝐼𝑅𝑆 − 𝜌𝑆𝑊𝐼𝑅𝐿

𝜌𝑆𝑊𝐼𝑅𝑆 + 𝜌𝑆𝑊𝐼𝑅𝐿
 

Where:  

𝜌𝑅𝑒𝑑 = reflectance in the Red band,  

𝜌𝑁𝐼𝑅 = reflectance in the NIR band,  

𝜌𝑆𝑊𝐼𝑅𝑆 = reflectance in the Short SWIR band and,  

𝜌𝑆𝑊𝐼𝑅𝐿 = reflectance in the Long SWIR band. 
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3.3.4 Multitemporal compositing  

Several studies have highlighted the importance of multitemporal compositing to enhance 

the burn signal. Multitemporal image composites are used to overcome problems derived 

from clouds, angular effects or reception issues found in image acquisitions (for instance, 

the Scan Line Detector (SLC) -off derived stripping effects of Landsat-7), leading to 

select the cleanest observation, while enhancing the burned signal (Barbosa et al., 1998; 

Chuvieco et al., 2005; Lizundia-Loiola et al., 2022; Sousa et al., 2003). In the case of 

FireCCISFDL10, we keep the minimum NBR value as an indicator of the highest signal 

of burn as proposed by Roteta et al. (2021a). The date of this value was used to mosaic 

each band in pre- and post-time series. The Julian date of burn layer of the final product 

was also based on this mosaicking.  

3.3.5 Additional masking 

Cloud mask of Landsat is based on the FMask algorithm, which usually performs well. 

However, in some cases it seems to miss significant cloud patches, which interfere with 

BA classification, especially in northern latitudes, and results in commissions or 

omissions (depending on whether clouds contaminate pre- or post-composites) due to the 

saturation of NIR and Long SWIR bands. An additional restrictive filter was applied to 

the aforementioned bands in order to mitigate this discrepancy. Pixels with NIR and Long 

SWIR values higher than 0.33 and 0.3, respectively, were filtered out of the time series 

to avoid cloud contamination.  

Additionally, sometimes Landsat data requires additional manipulations to eliminate 

invalid values (e.g., due to saturation) or clouds missed by the original cloud mask. The 

first case was prominent in the case of Landsat-5 in 2001-2002 perhaps due to a 

substantial modification in the primary operating mechanism of Landsat-5 TM's scan 

mirror, referred to as the scan angle monitor (SAM), which caused internal 

synchronization issues. This malfunction resulted in diagonal patches displaying 

abnormal observations with exceptionally high reflectance values in the Long SWIR 

region and low values in Short SWIR, particularly along the edges of the scene footprint, 

consequently generating incorrect fire detections with high signal in the NBR2 index. To 

address this anomaly, the SAM system was transitioned to an alternative mode known as 

the bumper mode, as outlined by Storey and Choate (2004), and this adjustment 

successfully rectified the issue. In the pre-processing algorithm of the years 2001-2002, 

pixels with NBR2 lower than -0.3 were masked before compositing step (see Figure 5).   
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Figure 5. Mitigation of Landsat 5 defective values in 2001-2002: A) and B) are False colour 

composites using NBR2-NIR-Red band combination before and after applying the filter, 

respectively. C) and D) show the RF classification probability on top of false colour composites 

before and after applying the filter, respectively. 

3.3.6 Random Forest Classifier 

A Random Forest (RF) classifier was trained, using the burned and unburned samples the 

user digitized in the ‘burned’ and ‘unburned’ layers within the GEE Code Editor 

environment. These samples were digitized over a Long SWIR/NIR/red colour 

composition of the pre-fire composite, post-fire composite and pre-fire/post-fire 

difference visualized over the GEE map. Among other data-mining algorithms included 

in GEE, such as Classification and Regression Tree (CART), Naive Bayes and Support 

Vector Machine (SVM), RF was selected because of the fast training and prediction 

involved, unconstrained by the distribution of the predictor variables, reduced overfitting, 

robustness to outliers and non-linear data. RF classification also handles unbalanced data 

that are common in BA mapping. Indeed, this technique has become popular within the 

remote sensing community due to the accuracy of its classifications.  

A Random Forest classifier is an ensemble classifier that produces multiple decision trees, 

using a randomly selected subset of training samples and variables. In order to balance 

the model accuracy alongside its complexity, RF implementation parameters were 

defined as:  

 Number of trees: 200. 

 Minimum leaf population: 10. 

 Maximum nodes: 450. 

 Fraction of input to bag per tree: 0.5 (default). 

 Number of variables per split: square root of the number of variables (default). 

All the models were trained for the year 2019 except for the case of annual models of 

Amazonia and Sahel, which were trained for 2004. Each model was trained using samples 
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collected from different variants of burn signal across the different land covers and 

ecoregions until the classification is optimal (confirmed through visual inspection).  

3.3.7 Generation of preliminary burned area 

Most of BA mapping algorithms employ a two-phased strategy. The first aims to identify 

most confident burned pixels called seeds (generally using active fires) to avoid 

omissions, then the second aims to delineate the entire burned patch using growing region 

methods. A similar approach was used in FireCCISFDL10, but here seeds were derived 

from pixels with high probability of burn rather than active fires due to the limited 

coverage of consistent thermal anomaly products (only from 2000 onwards). Seeds were 

defined as any pixel showing a probability of burn higher than the average burning 

probability of the burned training sample. Then, a growing process using the rook’s case 

contiguity is applied to cover contiguous pixels with a probability higher than 50% until 

the entire patch is delineated. Figure 6 illustrates the process of generation of preliminary 

BA patches.  

 

Figure 6. Burned area delineation process for some fire events in the northern border between 

Paraguay and Argentina for the period 2016-04-01 to 2016-09-30: A) Pre-composite (from 2015-10-

01 to 2016-03-31); B) Post-composite (from 2016-04-01 to 2016-09-30); C) The difference composite; 

D) RF classification probability; E) Seeds; F) Delineation of preliminary BA patches. All False 

colour composites use NBR2-NIR-Red band combination. 

3.3.8 Impact of the use of mosaicking date as predictor  

In the case of yearly periods, areas affected by frequent fires that might occur in two 

consecutive years might be missed due to the low difference in signal between pre- and 

post-composites. Although this case scenario was very rare, especially with the periods 
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design made for Sahel and that covers the actual fire season each year, the consideration 

of the time between two consecutive burns was important in order to reduce the triggered 

omissions.  

Figure 7 illustrates this enhancement, which takes into account the time difference 

between the two composites as a predictor for the RF model. In this way, if there is a high 

burn signal in the post-composite along with a sufficient time between the two composite 

dates to have a double burn, then the classification model captures the fire event. As a 

result of this operation, a significant improvement was noticed in the delineation of the 

burned patches. However, there were still some omissions in the patch extent, mainly in 

areas with a significantly high signal of burn in the pre-composite.  

 

Figure 7. Impact of the use of date difference between composites in the predicted BA probability 

in western Siberia in 2019: A) Pre-time series false colour composite; B) Post-time series false 

colour composite; C) BA classification without date difference as predictor; D) BA classification 

including the date difference as predictor. All False colour composites use NBR2-NIR-Red band 

combination. 

3.3.9 Generation of final burned area 

In some cases, the signal within the patch is heavily heterogeneous, which leads to 

omission of some burned pixels with significantly low signals. In order to mitigate this 

discrepancy, additional growing with relaxed conditions over BA probability and the 

classification predictors was applied. This growing region extends for 2-km kernels 

around each contiguous grid cell of more than 3x3 seeds, and again the rook’s case 

contiguity was applied (Figure 8C). This process was paramount especially in cases 

where patches were affected by Landsat-7 scan strips following its SLC failure occurring 

on May 31, 2003. 
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This issue caused a late observation of some parts of BA patches, which led to the 

alteration of the signal (Figure 8B). The first unrestrictive rule was applied to probability, 

then a second rule took into consideration NBR2 both in post-composite and in the 

difference composites.  

On the other hand, authors stressed that false BA detections associated with agricultural 

harvests could be mitigated using Red and Red edge bands (van Dijk et al., 2021). 

Therefore, Red and NIR bands were also considered in these rules to avoid commission 

errors due to harvested crops. The rules were defined as: 

𝑃𝑏 ≥ 40%      𝑂𝑅       {𝑁𝐵𝑅2𝑝𝑜𝑠𝑡 ≤ 0.06     𝐴𝑁𝐷     𝑁𝐵𝑅2𝑑𝑖𝑓𝑓 ≤ 0.005     𝐴𝑁𝐷     

 𝑅𝑒𝑑𝑑𝑖𝑓𝑓 ≥ 0.04     𝐴𝑁𝐷     𝑁𝐼𝑅𝑑𝑖𝑓𝑓 ≤ − 0.003}   

Where: 

𝑃𝑏 is the probability of burn. 

𝑁𝐵𝑅2𝑝𝑜𝑠𝑡 and 𝑁𝐵𝑅2𝑑𝑖𝑓𝑓 are NBR2 values for post and the difference composites, respectively. 

𝑅𝑒𝑑𝑑𝑖𝑓𝑓  and 𝑁𝐼𝑅𝑑𝑖𝑓𝑓  are the Red and NIR reflectance values of the difference composite, 

respectively. 

At this stage, 3 layers were exported from the GEE platform at grids of 2x2° below 50° 

parallels, 3x2° below 70° and 6x2° beyond: 

 Burned area patches as ESRI shapefiles. 

 The probability of burn (Pb). 

 The Julian date of burn (JD). 

The final phase aimed to enhance the shapes of burned patches through the elimination 

salt and pepper effects and the remaining empty holes within patches. This procedure was 

carried out using two geometrical operations; an opening followed by closing with a 3x3 

kernel. Figure 8 illustrates the impact of these post-processing operations on BA patch 

delineation.  
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Figure 8. Generation of the final BA patches: A) Post-time series false colour composite; B) 

Classification probabilities of preliminary BA; C) Classification probabilities after relaxed growing 

region; D) Final BA patch after applying geomorphological operations. 

3.3.10 Enhancement of fire detection dates in Siberia 

In Siberia, the limitation in the number of valid observations was critical. Although the 

burn signal can last a long time in boreal forests compared to other ecosystems, the delay 

of time reporting made the assessment of fire regime characteristics, such as seasonality 

and other fire patch characteristics, inconsistent. This issue was less remarkable in 

Amazonia and Sahel as the number of cloud-free observations were satisfying in most 

cases. To overcome this problem in the Siberian region, active fire information derived 

from VIIRS and MODIS sensors was used to smooth fire detection dates.  

For each burned pixel, if the Julian Day (JD) of burn derived from Landsat data is later 

than the nearest active fire date of the processing year, then it is being rectified as long as 

the distance is lower than 5 km, as described in Figure 9. The nearest active fire was 

retrieved from a Voronoi diagram.  
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Figure 9. Correction of burn detection dates in Siberia fires using active fires: A) JD layer before 

date correction; B) Active fires detected within the BA patch; C) Result of the JD correction. 

4 Layer output results 

The outputs of FireCCISFDL10 were three monthly layers described in Table 4. All 

layers were geolocated using WGS84 coordinates system at 0.00025° spatial resolution 

(~30 m at the equator) and are distributed using grids of grids of 2x2° below 50° parallels, 

3x2° below 70° and 6x2° beyond this latitude.  

Table 4. Contents of FireCCISFDL10 layers 

Layer abbreviation Description Possible values 

JD Julian Day of burn 

 -2: Unburnable  

 -1: Unobserved  

 0: Unburned  

 > 0: Julian day of burn  

PROB Probability of burn 
 0: Unburnable or unobserved 

 > 0: Probability of burn 

LC 

Land Cover of burned 

pixels derived from 

ESA CCI HRLC maps 

 0: Unburnable, unobserved or 

not burned 

 > 0: Land Cover of burned pixels 

Figure 10 shows the output layers for a large fire observed in the border between Bolivia 

and Brazil in 2019 (mainly occurring between August and September) along with the 

post-time series composites used as a classification input.  
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Figure 10. FireCCISFDL10 output layers’ example of tile 16S060W in Amazonia for months April 

to September 2019 (all months combined): A) Post-time series false colour composite; B) Julian 

day; C) Probability; D) Land cover. 

5 Limitations of the product 

The FireCCISFDL10 product presents a great step towards having consistent global BA 

information for long-term periods at a high resolution. Nevertheless, there are some 

limitations that should be cautiously considered by users. Most of them have been 

discussed in previous sections of this document and they can be summarized as following: 

1. The limited number of timely and reliable observations would be the major limitation 

of the product, which is due to the limited temporal accuracy of Landsat satellites 

especially before the Landst-8 era. In recent years, the use of combined information 

derived from Landsat satellites (Landsat-8 and 9) and Sentinel-2 mission (i.e., the 

Harmonized Landsat Sentinel product) would present a high potential to optimise the 

time reporting accuracy independently of active fire information and to enhance fire 

detection, particularly in 2012, where only Landsat-7 was operational while Landsat-

5 was in decommissioning preparation. This led to significant increase of omissions 

in Siberia. Some efforts are ongoing to overcome this issue.  

2. The Landsat-7 SLC failure occurring on May 31 2003 represents another discrepancy 

in the Landsat archive. Some post-processing enhancements have been performed to 

enhance BA patches and mitigate scan lines, which resulted in a significant 

improvement. However, the detection dates as well as the probability of detections 

were still doubtful.  
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3. As the algorithm is independent of active fire information, areas dominated with 

agricultural lands might cause some confusions between actual agricultural burning 

and simple harvest operations. We applied some restrictive rules using Red and NIR 

bands to enhance the discrimination between the two case scenarios to reduce the 

effects of this issue.  

4. Land cover information was missing in some parts of the edges of pilot sites (small 

strips). This information will be complemented from data sources such as the ESA 

LC CCI maps derived at 300-m spatial resolution.   
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Annex: Acronyms and abbreviations 

  

API Application Programming Interface 

ATBD Algorithm Theoretical Basis Document 

BA Burned Area 

BAMT Burned Area Mapping Tools 

CART Classification And Regression Tree 

CCI Climate Change Initiative 

CE Commission Error 

ECV Essential Climate Variables 

ENSO El Niño-Southern Oscillation 

ESA European Space Agency 

ESRI Environmental Systems Research Institute 

ETM+ Enhanced Thematic Mapper Plus 

FIRMS Fire Information for Resource Management System 

FMask Function of Mask 

GCOS Global Climate Observing System 

GEE Google Earth Engine 

HRLC High-Resolution Land Cover 

JD Julian Day 

LaSRC Land Surface Reflectance Code 

LC Land Cover 

LEDAPS Landsat Ecosystem Disturbance Adaptive Processing System 

MODIS Moderate Resolution Imaging Spectroradiometer 

NASA The National Aeronautics and Space Administration 

NBR Normalized Burned Ratio 

NBR2 Normalized Burned Ratio 2 

NDVI Normalized Difference Vegetation Index 

NIR Near InfraRed 

NPP National Polar-orbiting Partnership 

OE Omission Error 

OLI Operational Land Imager 

PROB Probability of burn  

QA Quality assessment 

RF Random Forest 

SAM Scan Angle Monitor  

SFD Small Fire Dataset 

SLC Scan Line Corrector  

SR Surface Reflectance 

SVM Support Vector Machine 

SWIR Short Wave Infra-Red 

TM Thematic Mapper 

USGS United States Geological Survey 

VIIRS Visible Infrared Imaging Radiometer Suite 

WGS World Geodetic System 
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