

climate change initiative

→ CLIMATE MODELLING USER GROUP

CMUG PHASE 3 – Cross-ECV Climate Science Study: Cloud and Aerosol Analysis Study

Institutes: BSC, ECMWF, (DLR for a potential follow up study)

Leads: Angela Benedetti, Kirsti Salonen, Jeronimo Escribano, (Axel Lauer)

ESA UNCLASSIFIED - For Official Use

European Space Agency

WP5.5 Cloud and Aerosol Analysis Study

Aerosol ECVs : Aerosol Optical Depth (Dust AOD, FM AOD, AOD) Cloud ECVs : Cloud Optical Depth (Cloud Top Height, Cloud Fraction, Ice Water Path, Liquid Water Path)

Constrain global **dust** aerosol simulations from the BSC MONARCH model with CCI data to produce dust analyses during the extraordinary event of June 2020.

 \rightarrow Explore pixel-level uncertainties, Coarse AOD vs DOD, Comparison with DOMOS results.

WP5.5.2 Cloud/Aerosol analysis with the ECMWF system.

Joint assimilation of **aeroso**l and **cloud** ECVs in the ECMWF IFS during June 2020 and September 2021 with the IFS 4DVar scheme in CAMS configuration. \rightarrow Impact of COD and AOD level 2 data on the 4D-Var analysis

OWP5.5 Cloud and Aerosol Analysis Validation Study: Evaluation using the ESMValTool and internal tools at BSC/ECMWF Soil Moisture, Water Vapour ECVs. A. Benedetti and K. Salonen (ECMWF), Axel Lauer (DLR), J. Escribano (BSC)

WP5.5.1 Dust aerosol analysis with the BSC system

Jerónimo Escribano

÷

Climate Modelling User Group

CMUG | 16-10-2024 | Slide 3

European Space Agency

Dust plume from the Sahara towards the Caribbean, June 2020.

Benefits of assimilation dust optical depth dust forecasts SLSTR – SU v1.14 for assimilation Aerosol optical depth (AOD) Dust aerosol optical depth (DOD) Coarse AOD

- Linear model of uncertainties
- Pixel-wise uncertainties provided in the retrievals

AERONET 500nm for verification

- Direct sun, Angstrom exponent <0.3
- Coarse AOD from SDA.

BSC's Multiscale Online Nonhydrostatic AtmospheRe CHemistry (MONARCH) model:

Global, 1 x 1.4 configuration a, GOCART dust emission scheme (as in Klose et al., 2021)

Local Ensemble Transform Kalman Filter (LETKF):

20 members, dust emission and meteorological ensemble perturbations (as in Escribano et al., 2022)

European Space Agency

AOD assimilation

- Improvement of scores with respect to control run
- Consistency with assimilated observations and VIIRS DOD
- Experiment with pixel-wise uncertainty shows better skills than experiment with linear uncertainties
- Comparable with DOMOS VIIRS assimilation exp.
- Small-scale structure in pixelwise uncertainty assimilation

CMUG | 16-10-2024 | Slide 5

Reported uncertainties smaller over ocean than over land

With implications in the error balance of DA system

Climate Modelling User Group

SLSTR DA analyses

Focus on error balance: new runs with larger dust calibration factor (global constant)

Assimilation with inflation of AOD uncertainty over ocean: factors 1 to 4

Climate Modelling User Group

CMUG | 16-10-2024 | Slide 7

÷

AERONET AOD coarse and AOD (Ang<0.3)

		Forecast, coarse AOD							lighter is better			
Ragged_Point, Ragged_Point (-59.43, 13.17)			MB	NMB	MFB (%)]	MAE	NME	MFE (%)	RMSE	r		
Respect Print: Respect Print: (30.43, 13.17)	Stations: 1	FR	-0.03	13.23	-30.93	0.09	46.94	69.75	0.18	0.82		
2.0 - 200	005ervations Mean: 0.3,5 FR Mean: 0.3,3 MB: -0.02, RMSE; 0.17, r: 0.84 SLSTR-linear_fc Mean: 0.29, MB: -0.06, RMSE; 0.18, r: 0.86	SLSTR-	0.05	22 14	26 70	0 00	41 40	(2) 00	0 10	0 07		
	SLSTR-pro-1_K_1 Meters 0.14, Meters 0.15, 7, 6.80 SLSTR-pro-1_K_1 Meters 0.14, Meters 0.15, 7, 6.80 SLSTR-pro-2_K_1 Meters 0.30, Meters 0.15, 7, 6.00 SLSTR-pro-2_K_1 Meters 0.32, Meters 0.15, 7, 6.00 SLSTR-pro-2_K_1 Meters 0.32, Meters 0.16, 7, 0.10	linear	-0.0:	-23.14	-26.78	0.08	41.42	62.90	0.10	0.87		
		SLSTR-	-0.01	-7.34	C 20	0.08	42.06	57.63	3 0.17	0.85		
		px1			-0.30							
	1	SLSTR-	0 00	0 07	12 00	0 00	20 45	E0 01	0.10	0 07		
2020 06 53 2020 06 51 2020 06 20 2020 06 23 2020 06 23 2020 06 25 2020 06 28 2020 06 30 Time	2 2 3	px2	-0.02	-8.97	-13.00	0.08	39.43	59.81	0.10	0.87		
0.5 -		SLSTR-	0 02	10 70	16 65	0 00	20 21	C1 EE	0.10	0 00		
×		px3	-0.02	2 -10.70	-10.05	0.08	39.31	55.10	0.10	0.00		
0.0	v \v	SLSTR-	0.00	10.01	10.10	0 00	20 70	<u> </u>	0.10	0.00		
2020-06-01 2020-06-06 2020-06-11 2020-06-16 20	20-06-21 2020-06-26 2020-06-30	px4	-0.03	-12.91	-19.49	0.08	39.72	62.49	0.16	0.88		

Forecast, AOD (Angstrom<0.3)

÷

lighter is better

sa

La_Parguera, La_Parguera (-67.05, 17.97)		MB		NMB	MFB (%)	MAE	NME	MFE (%)	RMSE	r
La Jungers, La Jungers, 147.05, 12.97)	Stations: 1 observations Mean: 0.22 FR Mean: 0.12 March 0.00 PMCE, 0.10 C 0.97		-0.04	-8.35	-11.03	0.22	42.16	47.24	0.36	0.73
2.0 175	SLSTR-inear fc [Mean: 0.15, MB: -0.07, RMSE: 0.20, r: 0.90 SLSTR-inear fc [Mean: 0.15, MB: -0.07, RMSE: 0.20, r: 0.91 SLSTR-px-1_fc [Mean: 0.18, MB: -0.04, RMSE: 0.15, r: 0.91 SLSTR-px-2_fc [Mean: 0.18, MB: -0.04, RMSE: 0.15, r: 0.93	STR-	0 10	10 12	11 47	0 10	26 17	40.25	0.24	0.00
	SLSTR-px-3_fc Mean: 0.18, MB: -0.04, RMSE: 0.15, r: 0.94 SLSTR-px-4_fc Mean: 0.17, MB: -0.05, RMSE: 0.16, r: 0.93	inear -0.10	-0.10	10 -19.13	-11.4/	0.19	30.17	40.25	0.34	0.82
	۶LS SLS	STR-	0 00	F 07	F (7	0 00	20 70	41 00	0.24	0 70
	<u>px1</u>	1	-0.03	-5.07	5.07	0.20	30.12	41.20	0.34	0.78
	, s 🖉 SLS	STR-	0 00		4 07	0 1 0	25 00	40.04	0 22	0 01
	🛛 🖉 🔏 🔹 👔 🙀	2	-0.03	.03 -5.54	4.07	0.19	33.90	40.24	0.32	0.81
	SLS	STR-	0 04	7 20	1 70	0 10		10.04	0 21	0.01
	🔰 🕺 📜 px3	px3 -0.0	-0.04 -7.30	D 1.73	0.10	35.54	40.24	0.31	0.82	
	SLS	STR-	0 05	0.00	0 40	0 10	25 52	40.04	0 22	0 00
2020-06-01 2020-06-06 2020-06-11 2020-06-16 2 Time	120-06-21 2020-06-26 2020-06-30 px 4	x4 -0.0	-0.05 -9.06	-0.48	0.18	35.53	40.24	0.32	0.82	
	<u></u>									

Climate Modelling User Group

CMUG | 16-10-2024 | Slide 8

Summary

- Godzilla dust event on June 2020
- SLSTR-SU v1.14 AOD assimilated in MONARCH LETKF global dust forecast mode
- Dust AOD and Coarse AOD from retrievals likely to underestimate dust plume
- With standard calibration constant factor (i.e., control run biased low):
 - Assimilation of SLSTR AOD improves scores with respect to the control
 - Performance similar to assimilation performed in DOMOS project (LIVAS and VIIRS)
- With unbiased calibration constant factor :
 - Inflation of uncertainties (~ 2 to 3) over ocean in the LETKF improves forecasts and error diagnostics

A revised version of visible dust AOD from CCI SLSTR retrievals, with their corresponding uncertainty estimates, might benefit dust forecasts, analyses and reanalyses.

Climate Modelling User Group

CMUG | 16-10-2024 | Slide 9

WP 5.5.2 Cloud/Aerosol analysis with the ECMWF system

CMUG integration meeting 16.10.2024

Kirsti Salonen and Angela Benedetti

Kirsti.Salonen@ecmwf.int Angela.Benedetti@ecmwf.int

© ECMWF October 24, 2024

Assessing the impact of CCI AOD and COD in the ECMWF system

COD

- SLSTR L3U data provided by Gareth Thomas (STFC) and Martin Stengel (DWD)
- Not part of the official CCI data sets, but the same algorithms are being used to cover the test periods June 2020 and September 2021

AOD

- Swansea University SLSTR v1.14, contact persons Peter North and Kevin Pearson
- 1. Data quality assessed with passive monitoring experiments
 - Realistic quality screening
 - Designing observation errors
- 2. Sensitivity tests in depleted observing system to decide on optimal assimilation setup
- 3. Joint assimilation of AOD and COD in depleted and in full observing system

Quality of SLSTR AODs is good and relatively homogeneous over sea

- Observation model (OmB) background statistics indicate bias over land, magnitude depends on location and season
- Random errors are more homogeneous over sea than over land and significantly lower in magnitude

AOD OmB bias, September 2021

AOD OmB sdev, September 2021

Sensitivity tests indicate 1.4 - 2 inflation factor for uncertainty to be used as observation error

• OmB sdev statistics indicate larger errors than the uncertainty estimates provided with the AOD data

COD monitoring indicates areas of large OmB mean differences

- Areas of significant OmB mean differences
 - Positive mean difference, i.e. observed COD higher than model bg, over regions where typically persistent marine stratus
 - Negative mean differences and increased OmB sdev in the inter-tropical convergence zone
 COD OmB bias, September 2021
 COD OmB sdev, September 2021

8

6

2

0 -2

> -4 -6

-8 -10

30

25

20

15

10

5

Uncertainty estimate provided with COD is underestimating the observation error

- OmB sdev is 6 times larger in magnitude than the provided uncertainty estimate, even for the quality screened data.
- In the assimilation experiments 0.75 x obs value is used as observation error.

Assimilation of COD degrades the temperature forecasts in depleted observing system

- Assimilation of <u>all COD observations</u> degrades the short range temperature forecasts, impact on humidity is rather netural.
- Limiting the assimilation to <u>COD values 0.5 10</u> or <u>blackisting data over tropics</u> slightly improves the temperature forecasts.

Assimilation of COD + AOD in <u>full observing system</u> generally degrades temperature and humidity forecasts but some improvements are seen for short range wind forecasts and against AERONET

ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Conclusions and ideas how to improve the impact

• Quality of AOD is good and relatively homogeneous over sea.

• COD has some large differences from its model counterparts especially over areas where there is typically marine stratus and over intertropical convergence zone.

• Joint assimilation of AOD and COD indicates degradation in temperature and humidity forecasts but some improvements seen for wind. Verification against AERONET AOT indicates positive impact.

- Ideas to improve the impact obtained from the COD assimilation
 - User has quite limited tools to do the quality screening of the observations. More informative quality flag
 provided with the COD data would be useful.
 - Assimilation of CODs could be improved with more strict first guess check
 - In these experiments no variational bias correction was applied, this could potentially improve the impact
 - Developing more sophisticated approach for the observation error could also help

CECMWF