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WP5.1: Machine Learning to advance climate model evaluation and 
process understanding – interim progress report 

Summary 

This report summarizes the progress made within WP5.1 until May 2024. The main aim of WP5.1 is to 
develop and apply machine learning (ML) techniques for advanced climate model evaluation and 
process understanding with ESA CCI data. Progress is reported for the two main tasks “Enhancing 
observational products for climate model evaluation with machine learning” (WP5.1.1) and “Causal 
model evaluation for cloud regimes and land cover types” (WP5.1.2) separately. 

Within WP5.1.1, a ML-method to derive cloud classes from coarse resolution data such as climate 
model output has been developed and evaluated with coarse grained ESA Cloud_cci data. Similar to 
Zantedeschi et al. (2019), cloud type labels from CloudSat are used in a first step to derive the cloud 
type from collocated physical cloud properties from MODIS using a deep neural network. In a second 
step, a random forest (RF) regression model is trained on a coarse-grained version of these data to 
allow for deriving cloud class distributions from coarse-resolution data such as climate model output. 
This work is documented in the journal article Kaps et al. (2023). The two-stage ML-method from Kaps 
et al. (2023) has then been applied to 35 years of ESA Cloud_cci data to generate the new Cloud Class 
Climatology dataset (CCClim). As a proof of concept, CCClim is compared to output from a simulation 
with the ICON-A climate model. This work is summarized in Kaps et al. (accepted). 

In WP5.1.2 ESA CCI data are used to better understand and to quantify the main drivers determining 
observed cloud properties. We apply causal discovery to investigate the links between cloud properties 
such as cloud cover, cloud water path, cloud top pressure and cloud optical depth and so-called cloud 
controlling factors, i.e., quantities that impact cloud formation and evolution (e.g., sea surface 
temperature and amount of available water vapour). For this, causal networks are calculated from time 
series of daily ESA CCI and ERA5 data. Causal discovery belongs to the field of unsupervised machine 
learning and aims to discover and quantify causal interdependencies and dynamical links inside a 

system such as the Earth’s climate (Runge et al., 2015; 2019). This approach goes beyond correlation-
based measures by systematically excluding common driver effects and indirect links. This is work in 
progress. This interim report describes the data preprocessing and method used as well as some first 
results for application to marine stratocumulus clouds. 

1 WP5.1.1 – Enhancing observational products for climate model evaluation 
with machine learning 

In WP5.1.1, an approach based on machine learning is developed and applied to derive cloud classes 
from high-resolution satellite data and coarse-resolution climate models. The aim is to allow for an 
improved evaluation of clouds in climate models by analysing cloud properties by cloud type. This 
enables evaluation of the different underlying processes driving formation and evolution of these cloud 
types in climate models. The method is then applied to ESA Cloud_cci data that are coarse-grained to 
the resolution of a typical climate model. As a proof of concept, the resulting timeseries of cloud class 
information from ESA Cloud_cci is then used for comparison with results from a simulation with the 
ICON-A model (Giorgetta et al., 2018). WP5.1.1 addresses the following two science questions: 
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• Can cloud classes be derived from ESA Cloud_cci data with machine learning to improve 
climate model evaluation? 

• How well does the ICON-A model reproduce the observed mean properties and variability of 
satellite derived cloud classes (regime-oriented evaluation)? 

1.1 ML-approach to derive cloud class distribution from coarse-resolution data 

A two-stage approach based on machine learning has developed to derive cloud classes from high-
resolution satellite data and coarse-resolution climate models. This approach is documented in Kaps 
et al. (2023) in detail and only briefly summarized in the following. 

Using cloud type labels from CloudSat and collocated physical cloud properties from MODIS similar to 
Zantedeschi et al. (2019), cloud type labels can be generated by a deep neural network for cloudy 
MODIS pixels. The basic approach is shown schematically in Figure 1. 

 

Figure 1: Schematic of the pixelwise classifier, which is a convolutional neural network trained on features from 
MODIS and one of eight cloud-type labels from CloudSat per pixel. From Kaps et al. (2023). 

These data are coarse-grained to the horizontal resolution of a typical climate model of 100 km x 100 
km and used to train a random forest (RF) regression model to derive cloud class distributions from 
coarse-resolution data. This is shown schematically in Figure 2. 

For details on the method and the datasets used, we refer to Kaps et al. (2023). 
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Figure 2: Cloud type predictions for data with low horizontal resolution are obtained by coarse-graining high-
resolution predictions as a basis to train a regression model predicting relative amounts of each cloud type for 
each coarse resolution grid cell. From Kaps et al. (2023). 

1.2 Application to ESA Cloud_cci data 

The two-stage ML-approach developed in Kaps et al. (2023) is applied to 35 years of ESA Cloud_cci 
L3U-AVHRR-PM version 3.0 data (Stengel et al., 2020). The dataset contains twice daily measurements 
from the Advanced Very High Resolution Radiometer (AVHRR) on a 0.05°-grid (L3U data). This is used 
to generate new “Cloud Class Climatology” dataset (CCClim), which is schematically shown in Figure 3. 

 

Figure 3: Schematic of the training of the two machine learning models. The second stage is trained on coarse-
grained output from the first stage. The trained random forest (RF) is then applied to ESA Cloud_cci data to 
generate the CCClim dataset. From Kaps et al. (accepted). 
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CCClim contains daily averages of nine cloud-related variables and the relative occurrences of nine 
classes (eight cloud types + undetermined). CCClim has a global coverage over the time period 1982 
through 2016 at a horizontal resolution of 1° x 1° allowing for performing process-oriented analyses of 
clouds on a climatological time scale. The cloud related variables and cloud types contained in CCClim 
are listed in Table 1. As an example, Figure 4 shows a time series of the relative frequency of occurrence 
(RFO) of the eight cloud classes contained in CCClim averaged over the Southern Hemisphere ocean 
from 1982 through 2016. 

A journal article introducing CCClim, more examples of potential scientific applications and a proof of 
concept comparison to a simulation with the climate model ICON-A has now been accepted for 
publication in Earth System Science Data (ESSD). 

Table 1: List of cloud related variables and cloud types contained in CCClim. 

Cloud related variables Cloud types 

cloud water path 

ice water path 

liquid water path 

cloud optical depth 

effective liquid droplet radius at cloud top 

effective ice particle radius at cloud top 

cloud top pressure 

surface temperature 

cloud area fraction 

Ci: Cirrus/Cirrostratus 

As: Altostratus 

Ac: Altocumulus 

St: Stratus 

Sc: Stratocumulus 

Cu: Cumulus 

Ns: Nimbostratus 

Dc: Deep convective 

 

 

Figure 4: Time series of daily mean relative frequency of occurrence (RFO) with the spatial standard deviation 
shown as shading for all cloud types averaged over the ocean in the Southern Hemisphere. All types show a 
consistent seasonal cycle and little anomalies and drift, as shown by the slope of the linear fit. Grid cells with a 
maximum RFO close to zero (1% quantile) are filtered out. From Kaps et al. (accepted). 
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2 WP5.1.2 Causal model evaluation for cloud regimes and land cover types 

As a key component of the hydrological cycle and the Earth’s radiation budget, clouds play an 
important role in both weather and climate. Our incomplete understanding of clouds and their role in 
cloud-climate feedbacks leads to large uncertainties in climate simulations. Using causal inference as 
an unsupervised machine learning method we aim to systematically analyse and quantify causal 
interdependencies and links between cloud properties and their controlling factors. This approach 
goes beyond correlation-based measures by systematically excluding common drivers and indirect 
links. By estimating the causal effect of each of the cloud controlling factors for different cloud regimes 
we expect to be able to better understand the dominant processes which determine the micro- and 
macro-physical properties of clouds. 

Specifically, causal inference is used to investigate the links between cloud properties and cloud 
controlling factors, i.e., quantities that impact cloud formation and temporal evolution of the cloud. 
For this, causal networks are calculated from time series of these variables from satellite and reanalysis 
datasets averaged over selected geographical regions and cloud regimes in order to quantify the 
strength of the individual links in the resulting causal graph by applying causal effect estimation.  

As a first step we focus on one region, the Pacific Ocean west of South America, where mainly one 
cloud type is present, marine stratocumulus. The processes controlling marine stratocumulus clouds 
are already well investigated which allows a better assessment of the ML method. In the following, 
data and methods are described as well as first results shown. This is work in progress. 

2.1 Stratocumulus clouds 

Stratocumulus clouds are common over the cooler regions of subtropical and midlatitude oceans 
where their coverage can exceed 50% in the annual mean (Wood, 2012). 80% of the world’s 
stratocumulus clouds are located over the ocean (Warren et al. 1986, 1988) mainly in eastern 
subtropical oceans on the western side of the continents and can persist over long time periods (Wood, 
2012; Klein and Hartmann, 1993). The low clouds are composed of an ensemble of individual 
convective elements forming a layer capped by a temperature inversion. The dynamics are primarily 
driven by convective instability caused by cloud-top radiative cooling (Wood, 2012). A schematic of the 
most important processes for marine stratocumulus clouds are shown in Figure 5. 
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Figure 5: Schematic of important processes for marine stratocumulus. Cloud parameters are shown as white 
bubbles, cloud controlling factors as blue bubbles. 

2.2 Data 

We use 5 years (2003-2007) of daily data. The datasets and variables used are summarized in Table 2. 
In cooperation with WP4, reformatting scripts (so-called “CMORizers”) were extended or newly written 
to add support for daily data for these datasets to ESMValTool, which is used to preprocess all data 
analysed in this study. 
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Table 2: Datasets and variables used in WP5.1.2. 

 

Figure 6 shows the the marine stratocumulus region over the Southeast Pacific analyzed. We average 
over 5°× 5° regions because clouds can be assumed to be in equilibrium with their large-scale 
environment at this horizontal scale (Klein et al.,1995). In order to filter weather-related variability, we 
apply a low pass filter (Butterworth filter, cut-off= 5 days) (Figure 7, blue lines). 

In order to increase the data volume as basis for the PCMCI framework (see Section 2.3) we use the 
timeseries of all 16 5°x5° grid boxes over the Southeast Pacific west of South America (Figure 6). The 
algorithm then calculates the causal links with the information from all 16 regions. 

 

 

Figure 6: Marine stratocumulus region over the Southeast Pacific analysed in this study consisting of 16 5°x5° 
boxes (75°- 95°W, 10°- 30°S). 
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Figure 7: Timeseries of all variables (abbreviations are defined in Table 2) of original daily data (black lines) and 
after applying a low pass filter to filter out 5-day weather variability (blue lines) averaged over one 5°x5° box 
over the Southeast Pacific (Figure 6). 

2.3 Method 

Causal discovery belongs to unsupervised machine learning and aims to discover and quantify causal 
interdependencies and dynamical links inside a system, such as the Earth’s climate (Runge et al., 2015; 
2019). This approach goes beyond correlation-based measures by systematically excluding common 
driver effects and indirect links. For our study we are using the software package TIGRAMITE which is 
a time series analysis Python module. It is available on GitHub 
(https://github.com/jakobrunge/tigramite) and it allows to reconstruct graphical models (conditional 
independence graphs) from discrete or continuously-valued time series based on the PCMCI 
framework with different methods and conditional independence tests to be chosen. PCMCI consists 
of two stages: (i) PC1 condition selection (the Peter-Clark algorithm, named after the original authors) 
to identify relevant conditions for all timeseries variables and (ii) the momentary conditional 
independence (MCI) test, where conditional independence between the variables given their 
estimated parents from the PC step is tested for a chosen significance level (Runge et al., 2019). 

As the method we chose PCMCI+ which can identify the full, lagged and contemporaneous, causal 
graph (up to the Markov equivalence class for contemporaneous links) under the standard 
assumptions of Causal Sufficiency, Faithfulness and the Markov condition (Runge et al., 2020). The “+” 
in PCMCI+ means that beside lagged dependencies also contemporaneous links are considered. In a 
first attempt we apply robust partial correlation (RobustParCorr) as conditional independence test 
which is valid for linear dependencies, including non-Gaussian distributions. It transforms the data to 
a normal distribution prior to the partial correlation test. After including solar insolation, it turns out 
that the dependencies are not linear anymore which is the reason for switching to the conditional 
independence test CMIknn (Runge et al., 2018). This is a conditional mutual information test based on 
nearest-neighbour estimator. No assumptions about the parametric form of the dependencies are 
required as these can be directly estimated from the underlying joint density. 

https://github.com/jakobrunge/tigramite
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TIGRAMITE also has a “Causal Effect” class that allows to estimate (conditional) causal effects and 
mediation based on assuming a causal graph. The aim is to use this approach to quantify the causal 
strength of the cloud controlling factors on the cloud properties. 

2.4 First results 

As a first step of the PCMCI framework in TIGRAMITE we investigate the distributions of all variables 
and the dependencies between the variables. As an example, Figure 8 shows the kernel density 
estimates, the joint densities between all variables and the marginal distribution of each variable on 
the diagonal. The distributions are non-Gaussian but mainly reasonable linear. Using initially the 
RobustParCorr as conditional independence test, we also explore CMIknn as an option (see Section 2.3 
for more details). 

 

 

Figure 8: Kernel density estimates of the joint and marginal (diagonal panels) densities for one 5°x5° grid box (see 
Figure 6). 

For applying PCMCI+ together with the conditional independence test RobustParCorr on the data, we 
use a maximum time lag of 1 day and the significance level for all tests pc_alpha is 0.1. The resulting 
causal graph is shown in Figure 9. Conflicting links, i.e. links with conflicting directions coming out of 
the orientation phase of existing links, are marked with crosses at the end mean. Application of the 
Causal Effect class to quantify the strength of the links in the causal graph is still work in progress. 
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Figure 9: Process graph of causal links. The link colours refer to the cross-MCI value and the node colour denotes 
the auto-MCI value at the lag with maximum absolute value. 

2.5 Further steps 

The aim of this work is to get a fully directed causal graph. The idea is to move to CMIknn as conditional 
independence test instead of RobustParCorr. This might solve some of the current problems in the 
calculations. In a next step, we will add known connections as link assumptions before calculating the 
causal links. Setting known links and their direction or removing links found by the algorithm that are 
known to have no physical basis are expected to help the algorithm. The aim is to obtain a fully directed 
causal graph with which we can estimate direct and mediated causal effects in the causal graph and 
thus quantify the influence of cloud controlling factors on observed cloud properties. 

The ultimate goal is then to apply this method also to other selected cloud regimes, e.g. clustered by 
specific land cover types. 
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