

climate change initiative

WP5 – Use case : data assimilation into large-scale river routing systems

SIFIED - For ESA Official Use Only

Malak Sadki, Vanessa Pedinotti (Magellium) Gaëtan Noual, Simon Munier (CNRM)

> Workshop 3rd - 4rd June 2024

Overview - Scientific context

- \rightarrow : Calibration, DA and so improve models accuracy
 - Hist. use of in-situ data into models for seasonal Hydrological Forecasting, Mitigate natural disasters
- ←: Filling data gaps and expand coverage of "model-based stations" in ungauged river reaches.

In-situ data limitation & advancements in RS :

- Remaining ungauged basins (private data, maintenance costs)
- Several space missions over last decades: Envisat, ERS 1-2, TOPEX, Jason 1-2-3, Sentinel 2 3A-3B, SARAL, MODIS

Overview - RS data

WSE Data

- Lower uncertainty
- Valuable for high-resolution hydrodynamic modeling
- Mismatch with the typical outputs of hydrological model
- Lack of detailed bathymetry/topography representation in large-scale models.
 - A single WSE value can correspond to different water volumes depending on bathymetry → affecting model accuracy

© USGS - Potomac river topography

WSE-Derived Discharge

- Closer alignment with hydrological models outputs
- Transformation from WSE to discharge introduces additional uncertainties
 - depending on methods to estimate discharge (hydrological models, empirical rating curves, ...)

K. Van Eerdenbrugh, 2018

Overview - Models : ISBA-CTRIP vs MGB

- Global-scale Land Surface River Routing model
 - ISBA (LSM) : Water & energy fluxes atm <--> land
 - CTRIP (RRM) : river routing + floodplains + aquifers
- Physical-based model, no calibration needed
- Part of Earth-System model (CNRM-ESM)
 - Earth water cycle / Climate studies
 - Water resources monitoring & forecasting

- Regional-basin based hydrological model
 - Production function : hydrologic module
 - Water energy balance | HRUs over a basin
 - Routing function : hydrodynamic module (rivers, floodplains, groundwater)
- Calibrated over basins (Niger, Congo,...)
- Flood forecast application

Overview - RS data

- → Does assimilating higher uncertain river discharge data perform better than assimilating lower uncertain water elevation data?
- → Are the spatial coverage and temporal resolution of these products enough for the scale of hydrological processes being studied (depending on each model application)?

Overview - Work Package 5

Objectives:

- Study the potential improvement that could be provided by the assimilation of river discharge products into large scale hydrological models
- Compare how different modeling approaches (regional vs global) compare over long time series

Involved:

CNRS-CNRM, Magellium

Modeling tools :

- CTRIP global river routing model (coupled to the ISBA global Land Surface Model) HyDAS tool
- MGB regional hydrological model HyFAA platform

Inputs (from WP3):

- Satellite water level data and associated uncertainties
- CCI river **discharge** products : Q_ality, Q_multispectral, Q_merged

<u>Case study :</u>

• Niger, Congo (MGB,CTRIP) / 18 basins (CTRIP)

HyDAS (CNRS-CNRM) - HyFAA (Magellium)

Hydrological Data Assimilation System

Hydrological Forecasting system with Altimetry Assimilation

- Ensemble Kalman Filter (EnKF) → Sequential method : model is updated each time an observation is acquired
- Correct :
 - Model <u>State</u> :
 - → CTRIP River storage
 - → MGB Compartments storage, soil moisture,...
 - + Model **parameters** in option (riverbed roughness,...)
- Assimilation of either water level anomaly or discharge
- Ensemble generated by perturbating meteorological forcing using EOFs (allows to conserve the spatio-temporal structure of the forcings)

Pf : background covariance error matrix R : observation error covariance matrix

H : observation operator

$$K = P^{f} H^{T} [HP^{f} H^{T} + R]^{-1}$$

esa

HyDAS (CNRS-CNRM) - HyFAA (Magellium)

Hydrological Data Assimilation System

Hydrological Forecasting system with Altimetry Assimilation

- Localization algorithm :
- A. based on distance along the river network
- B. adaptive method based on covariances between cells :
 - → non-linear observation operator based on dynamical relationship between cells/river reaches (Revel et al., 2018)

- Kalman Smoother: propagation of error covariance in time
- Within CTRIP's internal code (option to activate) :
 - \rightarrow Potential application over <u>any basin of the world</u>

- Implemented for MGB as externalized (.py) scheme :
 - Communicates with MGB model through a scheduler
 - Used for analysis and <u>forecast</u> of pre-calibrated MGB model state over <u>a chosen basin</u>

Experiment plan : Open-Loop

Niger Basin : validation in-situ obs. discharge

In-situ discharge data

<u>Niger basin :</u> ABN (11 stations, ~2010-2017)

Ke-Macina station - within Delta

Dire station - downstream Delta

Niamey station

Focus on MGB Open-Loop

Niamey station

Lokoja station - Downstream of confluence with Benoué river

Focus on MGB Open-Loop

Lokoja station - Downstream of confluence with Benoué river

Experiment plan : with assimilation

- 1 Assimilation of water level anomalies
 - . CTRIP-HyDAS : Global (18 river basins)
 - MGB-HyFAA : Niger, Congo
- 2 River discharge assimilation
 - . Relative contribution of each discharge product vs water levels
 - Q from altimetry
 - Q from multispectral
 - Q merged
 - Single and cross data assimilation (H/Q or discharge products together)
- 3 Impacts of assimilation parameters
 - Uncertainties (constant, time varying) from WP4.1
 - Smoother depth, localization length, inflation...

Experiment plan: with assimilation

Actual virtual stations

Niger (~2.1e12 km²)

Congo (~3.7e12 km²)

Niger Basin : validation in-situ obs. discharge

In-situ discharge data

<u>Niger basin :</u> ABN (11 stations, ~2010-2017)

→ THE EUROPEAN SPACE AGENCY

-

-

Results - Niger basin : CTRIP-HyDAS

Niamey station Niamey [2.125,13.458] ENS OL ENS assim HAN SIGMA 02 25000 ENS assim HAN SIGMA 04 ENS assim DIS SIGMA 03 ENS assim DIS SIGMA 05 20000 -OBS IN SITU ABN discharge (m3/s) 12000 5000 0 Ansongo Akka Alcongui Nantaka Ke-Macina Niamey 2011 2012 2013 2014 2015 2010 2016 2017 2018 Koulikord

Results - Niger basin : CTRIP-HyDAS

Lokoja station - Downstream of Lokoja [6.792,7.792] 60000 confluence with Benoué river ENS OL ENS assim HAN SIGMA 02 ENS assim HAN SIGMA 04 50000 ENS assim DIS SIGMA 03 ENS assim DIS SIGMA 05 OBS IN SITU ABN 40000 discharge (m3/s) 30000 20000 10000 0 Ansongo Akka Alcongui Nantaka Ke-Macin 2012 2013 2014 Niame 2010 2011 2015 2016 2017 2018

Koulikoro station

Existing Obs_CCI products : \rightarrow WSE, Qalti

Koulikoro station

Existing Obs_CCI products : \rightarrow Assimilating WSE (err=0.2m)

Dire Akka Ansongo Nantāka Koulikoro Banankoro Mandiana Mandiana Koulikoro Mandiana Mandiana

28

Koulikoro station

Existing Obs_CCI products : \rightarrow Assimilating Qalti (err%=30%)

Koulikoro station

Existing Obs_CCI products : \rightarrow Assimilating Qalti (err%=50%)

→ THE EUROPEAN SPACE AGENCY

Niamey station

Existing Obs_CCI products : \rightarrow Assimilating WSE (err=0.2m)

WSE,Qalti > 2018 Can't be compared to ABN in-situ obs.

Niamey station

Existing Obs_CCI products : \rightarrow Assimilating Qalti (err%=30%)

WSE,Qalti > 2018 Can't be compared to ABN in-situ obs.

Niamey station

- Existing Obs_CCI products : \rightarrow Assimilating WSE (err=0.2m)
- Other in-situ data source [2017-2020]

Niamey station

- Existing Obs_CCI products : \rightarrow Assimilating Qalti (err%=30%)
- Other in-situ data source [2017-2020]

Niamey station

- Existing Obs_CCI products : \rightarrow Assimilating Qalti (err%=50%)
- Other in-situ data source [2017-2020]

Lokoja station

Existing Obs_CCI products : \rightarrow WSE, Qalti

Lokoja station

Obs_CCI products : \rightarrow WSE at Lokoja = nan

-

Lokoja station

Existing Obs_CCI products : \rightarrow Assimilating Qalti (err%=30%)

-

Lokoja station

Existing Obs_CCI products : \rightarrow Assimilating Qalti (err%=50%)

Dire Aka Nantiska Koulikoro Mandiana Mandiana

Perspectives

- Sparse Virtual Stations: Few virtual stations within each river basin
- Limited impact at the basin scale
- Relevance of Assimilating additional observations
- Validation Approaches:
- Daily vs. monthly metrics.
- Independent observations
 - In-situ data :

<u>Niger:</u> **ABN** with ~40 gauge stations / daily data 2010-2017, ... <u>Congo:</u> **GRDC**, ...

- Assimilation Methods to Test:
 - Dual state-parameter correction
- Inflow correction
- Project SEED-FD: Offers cross-validation perspectives for specific basins (LISFLOOD model)
- Opportunities with SWOT products
- Long-Term: Implement operational reanalysis

climate.esa.int/projects/river-discharge

European Space Agency

Appendix

→ THE EUROPEAN SPACE AGENCY

*

Koulikoro station - upstream Delta

Ansongo station

Ansongo station

47

*

Ke-Macina station - within Delta

 48

· e esa

*

· e e sa

Koulikoro station

Existing Obs_CCI products : \rightarrow WSE, Qalti

Koulikoro station

Existing Obs_CCI products : \rightarrow Assimilating WSE (err=0.2m)

Koulikoro station

Existing Obs_CCI products : \rightarrow Assimilating WSE (err=0.4m)

Koulikoro station

Existing Obs_CCI products : \rightarrow Assimilating Qalti (err%=30%)

Koulikoro station

Existing Obs_CCI products : \rightarrow Assimilating Qalti (err%=50%)

Ke-Macina station

No CCI_obs product

Assimilating WSE in upstream/downstream stations (err=0.2m)

Date

Ke-Macina station

No CCI_obs product

Assimilating Qalti CCI_obs (err%=30%)

Dire station

No Obs_CCI product

= II 🛌 :: 🖛 + II 💻 🔚 = 11 II = = : :: := 🚳 II = : : : :: :: :

Dire station

No Obs_CCI product \rightarrow Assimilating WSE in upstream/downstream stations (err=0.2m)

Dire station

No Obs_CCI product → Assimilating Qalti in upstream/downstream stations (err%=30%)

