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Summary 

This document is the version 1.4 of the Climate Assessment Report for the Fire_cci 

project. It presents the methodology used to create the Fire_cci fire patch database from 

the MERIS Fire_cci v4.1 (FireCCI41), MODIS Fire_cci v5.0 (FireCCI50), MODIS 

Fire_cci v5.1 (FireCCI51), MCD45A1 collection 5, MCD64A1 collection 6 Global 

Burned Area (BA) products, and from the SFD v1.0 (FireCCISFD10) product for 

Africa. It includes a comparison at the regional and continental scales, and an 

intercomparison between the global databases. The report also focuses on trait-based 

approach and beta diversity, and on finding relationships between climatic variables and 

fire morphological features at the global scale. 
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1. Introduction 

Natural fires play an important role in the Earth system. The perturbation of vegetation 

dynamics through biomass burning and post-fire recovery (Bond et al. 2005) has an 

impact on the carbon cycle (Bond-Lamberty et al. 2007), and the various chemical 

emissions from wildfires (CO2, methane, etc.) (van der Werf et al. 2010) are susceptible 

to have significant impacts on the atmospheric radiative forcing balance and on human 

health. Those processes are then included in most of Dynamic Global Vegetation 

Models (DGVM) (Hantson et al. 2016). Understanding them is vital to produce reliable 

climatic forecasts of biosphere–atmosphere interactions, which are necessary to study 

future changes in the carbon cycle. At the same time, various global burned area (BA) 

products have been derived from remote sensing (Mouillot et al. 2014, Giglio et al. 

2009, 2013, Chuvieco et al. 2016) in order to help model the key processes related to 

vegetation fires, and to verify if DGVMs are able to accurately reproduce global BA, 

fire seasonality and fire emissions.  

Most of the fire modules simulate fire spread as a theoretical ellipse centred on the 

ignition point, where the elongation of the ellipse is proportional to the wind speed 

(Rothermel 1972). Burned area is usually estimated as the product of the number of 

fires times the area of the simulated ellipse. However, this method neglects the fact that 

fire propagation can be locally modified by wind orientation and topography gradient 

(Barros et al. 2012, 2013). Moreover, recent studies have shown that fire patch 

complexity is important to understand post-fire recovery, since remaining islands of 

living vegetation can accelerate the recolonization process after a fire (Roman-Cuesta et 

al. 2009, Oliveira et al. 2015). Regional analyses of fire shapes exist, but it has never 

been brought to a global scale. This new step is necessary in order to refine fire 

modules, and to allow for proper calibration of fire shape distribution in DGVM. This 

Climate Assessment Report focuses on the assessment of global fire patch databases 

from satellite Burned Area (BA) products and their subsequent use in climate research. 

Two types of data sets can be used to characterize fire patches. The first type consists in 

information provided by Forest Agencies, where fire patches are directly observed and 

recorded either by sight, photography, helicopters or ground GPS; the second is burned 

area observation derived from satellite data. None of those data sets are perfect, as they 

exhibit different biases and different fire detection completeness. It is, for example, 

difficult for forest service data to estimate human-bias in fire-shape reports, which can 

arise from visual misidentification of fire patch boundaries and from sampling 

limitation due to the necessity of presence of an operator for each fire event. The 

coverage of such reports is moreover limited to specific regions of Earth. On the other 

hand, satellite data reliability is known to depend on land type, cloud cover (Giglio et al. 

2009), algorithms used to reconstruct fire patches from pixels of BA and no data 

availability. However, satellite data allow for a continuous and global coverage of 

burned area. Since the Fire_cci fire patch database aims to provide a global and 

unbiased description of fire patch morphology, satellite data are more suitable for such a 

task. But still, fire patch determination from Forest Services remains extremely useful to 

control the reliability of the satellite derived fire patch database. It is, however, very 

difficult to combine the two types of datasets for analyses purposes, since their 

sampling biases differ greatly. 

The Fire_cci fire patch database has been created by the Fire_cci team from the MERIS 

Fire_cci v4.1 (FireCCI41), MODIS Fire_cci v5.0 (FireCCI50), MODIS Fire_cci v5.1 

(FireCCI51), the MCD45A1 collection 5.1 and MCD64A1 collection 6 BA data sets. 
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The FireCCI41 product uses the MERIS sensor to provide a global coverage of burned 

area every three days (at equator) from 2005 to 2011, with approx. 300x300m spatial 

resolution at Nadir (Oliva et al. 2011, Chuvieco et al. 2016). Using a similar algorithm 

than for FireCCI41 and based on the MODIS instrument on the Terra satellite, the 

FireCCI50 and FireCCI51 products provide BA over a longer time series (2001-2016, 

2017 in the case of FireCCI51), and with a resolution of approx. 250x250m at equator. 

The MCD45A1 collection 5 and MCD64A1 collection 6 BA products provide a global 

coverage every day (at equator) for the time series (2000-2017), but with a lower spatial 

resolution (approx. 500x500m) (Roy et al. 2008, Giglio et al. 2016). As described in 

Section 4, these two data sets will be used for intercomparison of the Fire_cci derived 

fire patch databases. A regional fire patch database has also been derived from the SFD 

BA product (based on Sentinel-2 data), which has also been generated by the Fire_cci 

team. With its very high spatial resolution (approximately 20x20m at Nadir), it provides 

a very accurate determination of fire morphological features in Northern Hemisphere 

Africa. We have also compared the features of the fire patches of the SFD product with 

those of the MCD64A1 product, over their overlapping time series. 

2. Methodology 

Fire patches were obtained by grouping pixels of burned area into fire patches. This was 

done using the “flood-fill” algorithm (Loepfe et al. 2014), which behaves as follows: 

 Starting from the top-left corner, the algorithm selects the first pixel with an 

identified burned date and attributes it an ID number. 

 The algorithm reads all neighbouring pixels (following a chess “queen 

scheme”): all pixels whose burned dates are smaller than an arbitrary threshold 

(the cut-off) receive the same ID number as the central pixel.  

 This process is repeated for each new pixel added to the group, until no more 

new pixels can be added following this method. 

 The algorithm looks for the next pixel with an identified burned date, and which 

does not already belong to another identified pixel group. 

Figure 1 shows that the choice of the cut-off can influence the size of the reconstructed 

patches. This effect is discussed and quantified in Section 4 for 3 different cut-off 

values identified as keystone thresholds for fire patch identification in Oom et al. 

(2016). These different values were chosen because they span the majority of cut-off 

values used in other analyses.  

From the yearly patch ID maps, where each burned pixel is referenced by its patch ID, 

individual patch description metrics were calculated. For each patch, its surface area (A, 

in ha), the length of its perimeter (P, in number of pixel side) and its core area (CA in 

ha) were calculated, the last parameter defined for each fire patch as the area covered by 

the pixels totally surrounded by other pixels belonging to the same fire patch. Patch 

shape complexity was evaluated from its fractal dimension (FD) calculated as 2 × 

ln(0.25*P)/ln(A) and its shape index (SI) calculated as 0.25*P/A
0.5

. The full process is 

summarized on Figure 2.  
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Figure 1: Example of fire patch reconstruction. Figures a to d show the fire patches calculated from 

individual burned pixels, with a cut-off of 3, 5, 9 and 14, for MCD64A1 in a region of northern 

hemisphere Africa. Continuous areas with the same colour indicate the same fire patch. Figure e shows 

the burn dates of the pixels (in days). Figures f and g show examples of the Standard Deviation Ellipses 

(SDE, dark blue) for three patches with a cut-off of 5 and 14. The half-axes and azimuthal angle are 

displayed in red.  

 

Figure 2: Flowchart of the fire patches processing (from Nogueira et al. 2016). 
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These commonly used patch metrics in landscape ecology were first developed in the 

Fragstats software and were used with the corresponding R CRAN package 

“SDMtools” (Species Distribution Modelling Tools). The ellipse fitting the spatial 

distribution of burned pixels within a patch was also computed, to capture the 

directional azimuthal angle and the elongation of the patch, two key variables 

describing fire spread processes. In addition, ellipses are the theoretical shapes 

simulated in DGVMs, and with which they can be benchmarked. Pixels belonging to the 

same patch ID were converted into points with geographic coordinates corresponding to 

the centre of the pixels. Then the “aspace” R CRAN package (Levine 2010) was used to 

fit the ellipse. From this ellipse, the main features were extracted, including:  

 The projection of the longest axis along X and Y coordinates respectively named 

σx and σy and the azimuthal angle θ, corresponding to the clockwise deviation of 

the longest axis of the ellipse from the northern direction, computed from lat/lon 

coordinates (in degree). 

 The projection of the longest axis along X and Y coordinates respectively named 

σx,km and σy,km computed from local flat coordinate system (in km) and the 

azimuthal angle θkm, corresponding to the clockwise deviation of the longest 

axis of the ellipse from the northern direction (in degree). 

 The eccentricity (E) as an index of patch elongation calculated as the square root 

of 1 minus the ratio of the squared lengths of the shortest and longest axis of the 

ellipse so that E = 0 corresponds to the most elongated shape, and E = 1 

corresponds to a perfect circle. 

Figure 3 shows the difference between the area of the fire patch computed from the 

ellipse Aellipse and the area computed from the BA pixels Apixel, scaled by Aellipse, 

versus Aellipse. The distribution is centred on a negative value (around 25 % for the 

Fire_cci product, and 40% for MCD45A1 collection 5 and MCD64A1 collection 6), 

with a longer distribution tail toward positive values. This means that the ellipse 

tends to underestimate fire patch size compared to the one computed at the pixel 

level. This bias is independent of the fire size, and seems only related to the 

resolution of the spectrometer. Figure 4 shows the evolution of this area bias with 

perimeter to area ratio. For low values of perimeter to area ratio, Apixel is generally 

bigger than Aellipse, but as the perimeter to area gets higher, the difference reduces. 

For bigger patches, the tendency changes and Aellipse starts to be bigger than Apixel. 

This behaviour is expected, since larger and longer fires have a higher probability to 

encounter natural obstacles, and are therefore susceptible to have more complex fire 

shapes. 

 

Figure 3: Difference between the areas computed from the ellipse and from pixel, normalized by the area 

of the ellipse, with respect to ellipse area. The left plot displays the result for the MERIS Fire_cci product, 

the centre one for MCD45A1 collection 5 and the right one for MCD64A1 collection 6. 
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Figure 4: Same as Figure 3, but with perimeter to area ratio. The discontinuities arise from the fact that 

perimeter to area ratio for small patches will take discrete values. 

Because both BA products are very large data sets, both of them were separated in 

3.75×3.75º tiles in order to parallelize the process. This method exposes us to a bias in 

the database since fire patches located close to the tile borders can be cut. This is why 

bands of 0.625º from each border of the tiles overlap with neighbouring tiles. All fire 

patches whose centres are within the central 2.5×2.5º area were attributed to the tile to 

avoid double counting. An example is displayed on Figure 5. 

 

Figure 5: Example of a 3.75×3.75º tile in Africa, which illustrates the removal of the 0.625º bands on the 

borders of the tile. The patches located on the borders are added to the database when the neighbouring 

tiles are processed, to avoid double-counting. 

3. Assessing the conservation of fire patch morphological features 

across fire products 

Fire spread processes are driven by the spatial arrangement of fuel, its water content 

status, and the combined effect of wind and topography. The Rothermel’s equation 

(Albini 1976, Rothermel 1972): 

𝑅𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
𝐼𝑅(1 + ∅𝑤 + ∅𝑠)

𝜌𝑏𝜀𝑄𝑖𝑔
 

synthesizes these combined effects used in spatially-explicit fire spread modelling 

(Burgan and Rothermel 1984), and is usually applied in landscape fire succession 
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models (Cary et al. 2006) for simulating fire contours. R is the rate of fire spread, IR is 

fire intensity, Φw Φs are modifiers for wind (w) and slope (S), ρ is fuel bulk density,  

is effective heating number, and Q is heat of pre-ignition. In turn, the final shape of 

fires, and fire intensity within the fire event, are driven by wind conditions (wind speed 

and direction) and topography. At the global scale, fire modules use a similar empirical 

formulation to simulate a theoretical ellipse of fire shape, but only driven by wind speed 

(Figure 6), with no information on landscape composition and structure or topography 

being available at this level. We then hypothesize here, for future climate modelling 

development including fire emissions, that pixel level information from global burned 

area remote sensing products can provide the keystone morphological features of fire 

shapes. However, global remote sensing products have usually been assessed according 

to the total burned area (Mouillot et al. 2014), it seasonal pattern (Giglio et al. 2013) and 

more recently the patch size distribution (Hantson et al. 2015). Instead of comparing the 

two datasets pixel to pixel, and deriving the usual overall accuracy and commission and 

omission errors, it is proposed here to investigate the conservation of fire patch 

morphological features in pixel level global remote sensing products compared to fine 

resolution observations. Fire patches, as an assemblage of adjacent pixels of quasi-

similar burn-date, can be described by their complexity, their elongation in space and 

the orientation of the major direction of the patch, as a key indicator of their underlying 

spreading conditions. Similar commission and omission errors, important to quantify 

pixel to pixel accuracy, can however have contrasted consequences on the final fire 

shape as illustrated in Figure 7. Accuracy of fire patch morphology has never been 

evaluated yet in global remote sensing, despite the potential interest in extracting key 

spreading information.  

 

Figure 6: Illustration of a theoretical 2-D fire ellipse (from Alexander 1985). 
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Figure 7: Illustration of the modification of patch morphological features because of commission (in red) 

and omission errors (in grey). 

3.1. At the local scale in the Brazilian Savanna 

The study was focused on a selected site in the South American savanna (Brazil) 

(Figure 8), one of the most fire-prone biomes globally, and one of the validation test 

sites for the MERIS Fire-cci v3.1 (FireCCI31) global BA product. This first part 

presents the methodological development based on the early FireCCI31and the keystone 

information derived from the pixel level product, to be further implemented at the 

continental (Section 3.2) and global scale. LANDSAT-based fire patch dataset and both 

MODIS MCD45A1 collection 5, and FireCCI31 were used. The consistency of fire 

patch metrics among these three datasets as a quality assessment were tested. The study 

area (250,000 km
2
) is located in the north-western part of the Tocantins state (TO) in 

central Brazil extending from 7º47’0” – 9º33’0”S to 48º55’0” – 50º26’0” W at the 

boundary between the savanna biome (Cerrado) and the Amazonian forest, a fire-prone 

region as a consequence of a flammable and dry vegetation type, and with high 

likelihood of human ignitions. MCD45A1 collection 5 and FireCCI31 were 

characterized by a burned date layer indicating the day of the year when a fire occurred, 

and the corresponding quality flag indicating the level of confidence in the fire 

occurrence varying between 0 (low confidence) to 100 (high confidence). Some MERIS 

Archives were missing in this area (Ramo et al. 2014) potentially leading to additional 

missing fires in this study site. Only the burned dates with confidence level higher than 

50% were selected for MCD45A1 collection 5 and FireCCI31. The confidence level in 

the two products is derived from different calculations, difficult to compare. The same 

threshold in the two datasets was selected, acknowledging the potential bias related to 

this choice. All the datasets were re-projected at 30m resolution in the UTM 22S datum 

WGS84 projection over the LANDSAT 7 scene 223/066 of the Worldwide Referencing 

System 2 (WRS2) Path/Row. The burn date (BD) dataset from MCD45A1 collection 5 

and MERIS Fire_cci v3.1 was used to identify individual burned patches (ID), using the 

spatio-temporal flood fill algorithm. The main characteristics of the surveys compared 

in this section are displayed on Table 1. 
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Figure 8: Administrative map of Brazil 

 

Table 1: Descriptions of global burned area data used for fire patch studies 

Burned area dataset Satellite 
Temporal and 

spatial resolution 

Temporal 

series used 

LANDSAT 

Landsat 5, Thematic 

Mapper (TM), Landsat 7, 

enhance thematic mapper 

(ETM+) 

15 days, 30m 2002-2009 

MCD45A1 collection 5 TERRA MODIS Daily, 500m 2002-2009 

FireCCI31 ENVISAT-MERIS 2-3 days, 300m 2006-2008 

 

The overall agreement between the three BA products inter-comparisons was 0.97, with 

an omission error varying between 0.49 for the comparison between the two global 

products MCD45A1 collection 5 and FireCCI31, to 0.81 for the FireCCI31 and 

LANDSAT comparison. The commission error varied between 0.64 for the MCD45A1 

collection 5 and LANDSAT comparison to 0.74 for FireCCI31and LANDSAT. When 

examining the omission and commission errors for each fire size class, higher errors 

(>0.9) for the smallest fire size class were obtained. The fire patch database were 

divided according to patch size classes with thresholds of 90ha, 270ha, 450ha, 630ha 

and 900 ha, similar for all datasets whatever their resolution. We observe in the 90ha-

270ha size class (called 90ha class), that FireCCI31 captured more patches overlapping 

with LANDSAT than MCD45A1 collection 5, due to its highest spatial resolution 

detecting more small fires, and in turn a better accuracy in properly locating these small 

fires, although remaining below 30%. No bias in the number of patches was observed in 

the other classes (Nogueira et al. 2016). Then, patch to patch correlations for each patch 

metric were investigated. For each cross tabulation and patch size threshold, the 

coefficients of determination R
2
 indicating the fraction of the variance explained by the 

best-fitted linear regression, and the slope indicating the potential bias to the 1:1 line 

expected if the sensors are fully conservative of the patch metrics are illustrated in 

Figure 9. For the patch area, the highest R
2
 were obtained for the FireCCI31 and 

MCD45A1 collection 5 (R
2
 > 0.8 for all patch sizes) and slopes close to 1, indicating 

very similar patch sizes between the two global BA products. When comparing global 

BA products to LANDSAT, R
2
 were also high for FireCCI31 (R

2
 > 0.8) and lower for 

the MCD45A1 collection 5 product (R
2
 varies between 0.4 and 0.8). Slopes of the 

regression for both global BA products FireCCI31 and MCD45A1 collection 5 cross-

tabulated with LANDSAT varied between 0.8 for all fire size classes and 0.6 for larger 
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fire sizes, indicating an underestimation of patch areas of similar magnitude for both 

global BA products. The correlation coefficients for the core area were similar to the 

total patch area, but with regression slopes reaching (0.6–0.9), indicating a slightly 

lower error in patch areas when removing the patch boundary buffer zone (500 m), 

where uncertainty seems to be the highest. Patch perimeters were also well correlated 

(R
2
 varying between 0.4 and 0.85) but with much higher perimeter values for 

LANDSAT patches performed at 30m resolution compared to MCD45A1 collection 5 

and FireCCI31 performed at 500m and 300m, so that regression slopes vary between 

0.3 and 0.65. Shape index and Fractal dimensions were correlated with R
2
 around 0.5 

between the two global products FireCCI31 and MCD45A1 collection 5 but poorly 

correlated when compared to LANDSAT with R
2
 < 0.3, an expected result regarding the 

higher resolution of the LANDSAT fire patches. The largest patches (> 900 ha), 

however, experience better, yet still low, correlations for the fractal dimension (R
2
 > 

0.4). When analysing the comparison of the fitted ellipse features (eccentricity and 

azimuthal direction of the longest axis), R
2
 were low for all comparisons, but reached 

values R
2
 > 0.3 for patches larger than 450 ha for eccentricity and R

2
 > 0.4 for patches 

larger than 450 ha for θ. Under this patch size threshold, R
2
 was below 0.5. Slopes of 

the regressions between eccentricities vary between 0.3 and 0.7 for patches larger than 

450 ha, lower than the expected 1:1 line, indicating an underestimation of patch 

elongation and missing pixels at the extremes of patches. Slopes of the regressions for θ 

varied between 0.7 and 1.1 for all product comparisons, close to the expected unbiased 

1:1 line. 

 

Figure 9: Coefficients of determination (R) and regression slope (s) (Y axis) as a function of patch size 

(in ha, X axis) for patch size, eccentricity, perimeter and patch orientation (Θ), for the different BA 

products. (R) solid line: coefficient of determination; (s) dotted line: slope. 

3.2. At the continental scale in North America 

The fire patch analysis initially developed at the local scale on FireCCI31 in Brazil was 

extended with the FireCCI41 and MCD64A1 collection 6 products at the continental 

level in North America (United States and Canada), where additional local level 

information on fire shapes is available. For Canada, fire polygons from the Canadian 

National Fire Database (CNFD) were used, which can be downloaded from the 

Canadian Wildland Fire Information System (CWFIS). For United States (US), fire 

polygons from Geospatial Multi-Agency Coordination (GeoMAC) were used. GeoMAC 
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fire polygons are collected in the field using tools such as GPS or infrared flights. 

Similarly, CNFD fire polygons are collected from several sources. 

The whole North American continent was first divided into 2° x 2° resolution tiles. Each 

tile was reprojected into equal area projection. The BD dataset from FireCCI41 and 

MCD64A1 collection 5 were used to identify individual burned patches (ID) for the 

2005-2011 period for which FireCCI41 is available, using the similar spatio-temporal 

flood fill algorithm as developed at the local level. Regarding the sensitivity of the patch 

identification to the cut-off value (maximum burned date difference between two 

neighbouring cells to be considered for belonging to the same fire patch) as illustrated 

in Oom et al. (2016), FireCCI41 and MCD64A1  collection 6 with cut-off values of 3, 

5, 9 and 14 days were processed. Besides, fire polygons from forest services for the 

same period were projected and rasterized, for each tile, on the projection of the 

FireCCI41 and MCD64A1 collection 6 datasets so that each burned pixel belongs to a 

patch identification number ID. For all fire datasets (FireCCI41, MCD45A1 collection 

6, and GeoMAC_CNFD forest service), for each tile fire morphological features were 

computed for each fire patch larger than 100 ha, according to the threshold determined 

to compute reliable fire morphological features (> 5 pixels). In turn, for each tile, a list 

of fire patch IDs were obtained. For each dataset, each fire patch was characterized by 

the following fire morphological features by considering more specifically direction, 

size, spread and complexity: area, the directional angle of the longest ellipse axis, and 

eccentricity.  

To build and assess the quality of the fire patch assemblage and compare datasets from 

the various sources in each 2° tile, we hypothesized that the community of fire patches 

defined by their morphological features should be as similar as possible. To compare 

the lists of fire patches derived from the fire datasets over the North American 

continent, we relied on a novel approach initially developed in community ecology. 

When a list of fire patches (called ’assemblage’) is considered, characterized by a set of 

n morphological features (called ’traits’), each fire patch (called ’species’) can be 

located in an n-dimensional space, each axis representing the values of a trait. In turn, 

each assemblage (or list) of fire patches representing a pyro-region (or community), is 

defined by the n-dimensional (volume or space) distribution of points, defined by their 

trait values. Comparing two assemblages then relies on comparing the n-dimensional 

distribution (morphological space) of fire patches defined by their morphological traits. 

We hypothesize here that the fire regime in a given region, obtained from two datasets, 

should have similar n-dimensional (morphological space) distribution of fire patches. 

Statistical frameworks describing n-dimensional volume of traits have already been 

developed in the field of community ecology to assess the distribution of species 

(vegetal or animal) defined by their functional traits for each assemblage across space or 

time (Schleuter et al. 2010, Mason et al. 2005). As illustrated on Figure 10, among 

different indices, the Functional Richness (FRic) describes the whole volume defined by 

its extreme traits (Figure 10b). The Functional Evenness (FEve) indices measure 

whether mean species traits are distributed regularly within the occupied trait space, i.e. 

with equal distances between nearest neighbours and equal abundances (Figure 10c). 

Functional Divergence (FDiv) indices measure the variance of the species functions and 

the position of their clusters in trait space (a high FDiv is caused by the clustering of 

species and/or abundances at the edges of the traits space) (Figure 10d). Functional 

Dispersion (FDis) indices measure the weighted mean distance to the average position 

of the species present in an assemblage. Functional Specialization (FSpe) indices 
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measure the weighted mean distance of a species to species pool centroid. Functional 

Originality (FOri) indices measures the weighted mean distance of a species to the 

nearest from the species pool. Comparing functional structure of fire patch datasets then 

relied comparing the values of FRic, FEve, FDiv, FDis, FSpe and FOri indices ranging 

from 0 to 1. 

 

Figure 10: Adapted example of three different functional diversity indices in functional space from 

Villéger et al. (2008): Functional Evenness (FEve), Functional Divergence (FDiv), Functional Richness 

(FRic). 

Another approach developed in community ecology used the concept of β-diversity (β-

div) (Figure 11, Villéger et al. 2013) to investigate how two co-occurring n-dimensional 

volumes overlap (β-div), which can be decomposed in how two co-occurring n-

dimensional volumes are translated (Turnover, Turn) in the functional space, or are 

included (Nestedness, Nest) in each other. The two volumes can completely overlap (β-

div = 0, Turn = 0, and Nest = 0, Figure 11b) or completely mismatch (β-div = 1, Turn = 

1, and Nest = 0, Figure 11d, g). In between, the two volumes can partially overlap, 

either one volume being completely (β-div = Nest, and Turn = 0, Figure 11e) or 

partially (β-div, Turn and Nest  > 0, Figure 11f) included in the other or both volumes 

being the same size (similar richness) but translated in the n dimensional space (β-div = 

Turn, and Nest = 0, Figure 11c). Comparing the dissimilarity of morphological structure 

of fire patch datasets then relied in comparing the overlap (functional β-div), translation 

(functional Turn) and inclusion (functional Nest) in the functional space. 
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Figure 11: Conceptual framework for the decomposition of functional β-diversity from Villéger et al. 

(2013) with theoretical examples of complete trait overlap (b), partial trait inclusion (e), partial overlap (c, 

f) and total mismatch (d,g). 

The structure of the fire patches was evaluated by computing the functional diversity 

indices for each sensor at each of the cut-off thresholds. The analysis was focused on 

the comparison between each sensors and the forest service dataset. Figure 12 illustrates 

the continental map of FRic and FDis for FireCCI41 and the forest service data 

GeoMAC_CNFD. When comparing cell to cell values of functional diversity indices 

obtained for the North American continent for FireCCI41 and for GeoMAC_CNFD 

forest service (Figure 12), FireCCI41 present higher values than GeoMAC_CNFD 

forest service suggesting that the volume of FireCCI41 is larger and defined by more 

extreme functional traits than the volume of the forest service, for example more 

extended fire patches, more elongated or more complex. When plotting the pixel to 

pixel comparison of the two dataset, no clear relationship on the continental pattern 

between the two dataset was identified. Higher FRic in FireCCI41 are actually located 

in the central USA, at the boundary between mountainous forests and grasslands, so that 

grassland fires might be accounted for in FireCCI41 data and not in the forest service’s 

dataset. Nevertheless, it could be concluded that FireCCI41 might generate fire patches 

with extreme morphological features not observed with local observations, as for 
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example two neighbouring fires happening at the same time in forest services but 

considered as one joined fire from the flood fill algorithm.  

 

Figure 12: Example of Functional Richness (FRic) and Functional Dispersion (FDis) obtained from 

FireCCI41 cut-off 14 (Left) and GeoMAC_CNFD forest service (Right). 

When looking at FDis, representing how dispersed are fire types within the n-

dimensional space, more similarities between datasets were obtained, with a linear 

correlation when comparing tile to tile indices (Figure 13), suggesting that both datasets 

present similar assemblage of fire patches beside the extremes driving FRic. These 

results then tend to acknowledge the accuracy of the assemblage of patch morphological 

features between FireCCI41 and local observations for most fire patches, but the flood-

fill algorithm might generate potential extreme fire size or complexity actually not 

happening, or not referenced the same way (in the case of multiple joined fires) in forest 

service data. Our statistical framework captures in few indices a complex comparison, 

usually performed with the Gini index (Oom et al. 2016), but with special emphasis on 

morphological features explaining fire spread processes generating fire patches, a 

keystone information for global fire model benchmarking.  
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Figure 13: Bivariate relationships between Functional Richness (FRic, top) and 

Functional Dispersion (FDis, bottom) obtained from GeoMAC_CNFD forest service (x-

axis) and FireCCI41 cut-off 14 (y-axis). 

Similarly, when comparing tile-to-tile values of FRic obtained from GeoMAC_CNFD 

forest services and MCD64A1 collection 6 (Figure 14), MCD64A1 collection 6 presents 

higher values than GeoMAC_CNFD forest service with a low spatial correlation (Figure 

15). When looking at FDis, similar results as in the FireCCI41 comparison were 

obtained, with a significant correlation of the spatial pattern of these indices at the 

continental level, suggesting a good agreement between the two datasets when omitting 

extreme patches. 
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Figure 14: Example of Functional Richness (FRic) and Functional Dispersion (FDis) obtained from 

MCD64A1 collection 6 cut-off 14 (Left) and GeoMAC_CNFD forest service (Right). 

 

 

 

Figure 15: Bivariate relationships between Functional Richness (FRic, top) and Functional Dispersion 

(FDis, bottom) obtained from GeoMAC_CNFD forest service (x-axis) and MCD64A1 collection 6 (y-

axis). 



 

 

Fire_cci 
Climate Assessment Report 

Ref.: Fire_cci_D5.1_CAR_v1.4 

Issue 1.4 Date 16/11/2018 

Page 25 
    

 

Figure 16: Functional β-diversity (β-div) maps for North America obtained from GeoMAC_CNFD forest 

service and FireCCI41 cut-offs 3, 5, 9 and 14. 

Then the dissimilarity between the assemblages of fires patches were evaluated by 

computing the volume overlap (i.e. functional β-div) of the pairwise comparison and 

decomposing it into the volume translation (i.e. functional Turn) and inclusion (i.e. 

functional Nest). Figure 16 illustrates β-div maps between GeoMAC_CNFD and 

FireCCI41 cut-off 3, 5, 9 and 14. β-div higher than 0.2 were obtained, suggesting partial 

overlapping between functional spaces, whatever the cut-off values for the patch 

identification algorithm, and supporting previous results on the FRic difference. 

However, it can be observed that β-div slightly decreased with higher cut-offs, 

suggesting better agreement between remote sensing and forest service products with 

high cut-off values. 

When looking at the functional β-div maps obtained from comparison of the remote 

sensing-derived products MCD64A1 collection 6 and FireCCI41, high values of β-div 

can still be observed, but decreasing to 0.2 (Figure 17), suggesting a larger overlap 

between remote sensing derived products than considering forest services. When 

comparing different cut-off values, it can be observed that β-div slightly decreased with 

lower cut-offs, suggesting better agreement between remote sensing products with low 

cut-off values. Burn date uncertainties and mismatch between remote sensing products 

might then generate stronger differences for high cut-off values, generating abnormally 

and inconsistently large fires between products. When comparing β-div spatial pattern 

between cut-off values (Figure 18), a strong linear correlation is observed, suggesting 

that the spatial pattern of mismatch between FireCCI41 and MCD64A1 collection 6 is 

not influenced by cut-off values. 
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Figure 17: Functional β-diversity (β-div) maps for North America obtained from MERIS Fire_cci v4.1 

(FireCCI41) and MCD64A1 collection 6 cut-off 3, 5, 9 and 14. 

 

 

Figure 18: Bivariate relationships between functional β-diversity (β-div) obtained from MERIS Fire_cci 

v4.1 (FireCCI41) and MCD64A1 collection 6 cut-off 3, 5, 9 and 14. 
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In order to better capture the three components of the n-dimensional hypervolumes, as 

overlap (β-div) is decomposed in volume translation (Turn) and volume inclusion 

(Nest), a colour composition of functional β-div, Turn and Nest was created. Figure 19 

shows the colour interpretation of theoretical examples of partial trait inclusion, partial 

overlap, total mismatch and total match following Villeger et al. (2013). We present in 

Figure 19 the correspondence between types of hypervolumes overlap and the colour 

legend further used in the continental maps (Figure 20 and Figure 21). In short, the 

lighter the colour, the higher is the agreement. Blue corresponds with cases where Nest 

is higher than Turn, while purple corresponds with cases where Turn is higher than 

Nest. 

 

Figure 19: Interpretation of colour composition of functional β-diversity (β-div), functional Turnover 

(Turn) and functional Nestedness (Nest) with theoretical examples of partial trait inclusion (e), partial 

overlap (c, f), total mismatch (d, g) and total match (b) from Villeger et al. (2013). High values of Nest 

are under the black line, while low values of Nest over the black line. 

Figure 20 illustrates the colour composition of β-div, Turn and Nest over North 

America between GeoMAC_CNFD and FireCCI41 cut-off 14. For most of the 

continent “purplish” combinations were obtained, representing a partial overlap (cases f 

and c from Villeger et al. 2013, Figure 19), mostly identified in the rocky mountains of 

the USA. The second dominant composition is the ‘bluish’ case, representing of partial 

trait inclusion (case e from Villeger et al. 2013, Figure 19), mostly identified in the 

eastern part of the rocky mountains of the USA and Central Plains. Combinations “dark 

purplish” were mostly identified in boreal areas, representing a high β-div value and 

Turn and a low Nest, describing a low overlap between products (cases d and g from 

Villeger et al. 2013, Figure 19).  
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We note here that a mismatch on one single trait can lead to high β-div values. For 

example, as observed for Brazil, fire patches from global remote sensing are usually 

smaller in area than local observations, a result that was also captured in North America. 

Lower β-div values are observed in the US Rockies, indicating the best agreement 

between the two products in cells located in this region. When looking at the functional 

Turn and the functional Nest, higher Turn values were observed in the boreal forests of 

Canada, which, combined with high β-div values, indicate a similar functional richness 

(similar diversity of fire traits), but translated in the n-dimensional hypervolume, which 

in turn suggests that global remote sensing is somehow systematically biased from local 

observation with small fire sizes, small core area, or smaller perimeter, for example. On 

the contrary, in the US Eastern Rockies and Central Plains, Nest values are higher, 

indicating for these regions that FireCCI41 captures only a fraction of all the fire shape 

diversity observed from local forest services, suggesting potential missing fires in one 

of the datasets, potentially due to forest services not registering grassland fires. It is 

necessary to note that forest service fire databases were used, while the FireCCI41 

includes all types of fires, so discrepancies are higher in this region of mixed vegetation 

types. 

 

Figure 20: Colour composition of functional β-diversity (β-div), functional Turnover (Turn) and 

functional Nestedness (Nest) obtained from GeoMAC_CNFD forest service and MERIS Fire_cci v4.1 

(FireCCI41) cut-off 14. 

The same methodology was then applied to compare patch assemblages obtained from 

FireCCI41 and MCD64A1 collection 6 (Figure 21), represented on a colour 

composition legend. Dominance was found of “purplish” cases with a partial overlap, 

and corresponding to a translation of hypervolumes (case c and f from Villeger et al. 

2013, Figure 19). The second dominant type of patch assemblage is the “bluish” case 

with a partial trait inclusion (case e from Villeger et al. 2013, Figure 19). In this case, 

extreme morphological traits are then captured by one sensor but not observed on the 

other. Most of these cases are found in the boreal forest and southwestern United States 

where most grassland fire occur. Likewise, as when comparing GeoMAC_CNFD and 

FireCCI41 cut-off 14, ‘dark bluish’ and ‘dark purplish’ cases representing the higher 

disagreement, where mostly found in the boreal areas and south of United States. 
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Overall, both patterns (GeoMAC_CNFD and FireCCI41 cut-off 14; FireCCI41 and 

MCD64A1 collection 6) present a similar direction but a different magnitude. 

 

Figure 21: Colour composition of functional β-diversity (β-div), functional Turnover (Turn) and 

functional Nestedness (Nest) obtained from MERIS Fire_cci v4.1 (FireCCI41) and MCD64A1 collection 

6 cut-off 3. 

Cases are better illustrated by plotting the n-dimensional hypervolumes of the two patch 

assemblages and their functional diversity indices. As a first study case, Figure 22 

represents the ‘purplish’ case of partial overlap between two n-dimensional 

hypervolumes (tile with latitude = 52 and longitude = -93 from the map of Figure 21). 

The blue points represent patches obtained from FireCCI41 and the red points from 

MCD64A1 collection 6. In this case, fire types observed in one sensor are not observed 

in the other, mostly driven on area morphological feature, and as a consequence on 

direction and elongation traits. Figure 23 more particularly represents the FDis index as 

the sum of the distance between each fire patch on the trait axis and the barycentre of 

the assemblage, describing the dispersion of fire types within the FRic volume. 

 

Figure 22: Example of (c) theoretical example of partial overlap from Villeger et al. 2013 obtained from 

MERIS Fire_cci v4.1 (FireCCI41) (Blue) and MCD64A1 collection 6 (Red) cut-off 3 for a tile with 

latitude = 52 and longitude = -93. FireCCI41 + MCD64A1 collection 6 white convex hull. β-diversity (β-

div) = 0.597, functional Turnover (Turn) = 0.466 and functional Nestedness (Nest) = 0.1. 
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Figure 23: Example of functional diversity indices obtained from MERIS Fire_cci v4.1 (FireCCI41) 

(Blue) and MCD64A1 collection 6 (Red) cut-off 3 for a tile with latitude = 52 and longitude = -93. 

Functional Richness (FRic) and Functional Dispersion (FDis).   

 

Figure 24 and Figure 25 represents the ‘bluish’ case with partial trait inclusion with 

high β-div and low Turn, suggesting the inclusion of a hypervolume within the other. In 

this case (tile with latitude = 27 and longitude = -81 from the map of Figure 21), two 

fires are observed on the MCD64A1 collection 6 (red circles) with high values on area, 

and not observed on FireCCI41 sensor (blue circles), so that two large fires are captured 

by MCD64A1 collection 6 and not in FireCCI41 sensor (blue circles). This peculiar 

case indicates an extreme case of fire morphological traits where they are built from the 

pixel level information in one sensor and not the other, highlighting potential 

sensibilities of the flood fill algorithm to different burn dates registered in the sensors. 

Despite high differences in the hypervolumes generated from the two sensors, and due 

to few extreme fire shapes, the overall FDis is mostly driven by the numerous smaller 

fires so that these indices are quite similar between the products. 
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Figure 24: Example of (e) theoretical example partial trait inclusion from Villeger et al. 2013 obtained 

from MERIS Fire_cci v4.1 (FireCCI41) (Blue) and MCD64A1 collection 6 (Red) cut-off 3 for a tile with 

latitude = 27 and longitude = -81. FireCCI41 + MCD64A1 collection 6 white convex hull. β-diversity (β-

div) = 0.278, functional Turnover (Turn) = 0.230 and functional Nestedness (Nest) = 0.049. 

 

Figure 25: Example of functional diversity indices obtained from MERIS Fire_cci v4.1 (FireCCI41) 

(Blue) and MCD64A1 collection 6 (Red) cut-off 3 for a tile with latitude = 27 and longitude = -81. 

Functional Richness (FRic) and Functional Dispersion (FDis). 

From this continental scale analysis and our statistical framework based on fire patch 

morphological features derived from the pixel level information delivered in global BA 

products, the following conclusions can be obtained: 
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 The statistical framework of comparative ecology applied to pyrogeography is a 

useful tool to compare assemblages of fire patches, synthesizing complex 

information into few meaningful indices.  

 The comparison between FireCCI41 and MCD64A1 collection 6 could lead to 

encouraging conclusions on the matching between the two products. The spatial 

pattern of patch assemblage at the continental scale is conserved across products. 

A potential bias on extreme fire sizes was noticed, affecting the FRic component 

of the comparison, so that extreme fire shapes can be identified in one product 

and not the other. Again, the sensitivity of the statistical framework to identify 

these discrepancies should be valued. Overall, however, the other component of 

the functional indices revealed similar values across remote sensing products 

indicating a general agreement in detecting patch assemblages. Differences in 

large patches can arise from uncertainties in the burn date and the sensitivity of 

the flood fill algorithm to this variable rather than uncertainties in the burned 

pixel detection between products. The patch identification derived from pixel-

level products, both MCD64A1 collection 6 and FireCCI41, should be taken into 

consideration, leading to similar mismatches with local observations for extreme 

fire shapes.  

3.3. At the global scale 

Based on previous results at the local level in the Brazilian Savanna and at the 

continental level in North America, similar analyses were performed on 1° x 1° 

resolution tiles at global scale. Global morphological fire patch products from the FRY 

database (Laurent et al. 2018) at cut-offs 3, 5, 9 and 14 were used. Each cut-off product 

were derived from FireCCI41 and MCD64A1 collection 6 BA products. Thus, the 

spatial global pattern of the FRic and FDis between 8 products were analysed by testing 

for linear grid-cell to grid-cell relationships on global maps and by analysing the trait 

hyper-volume dissimilarities with the β-div index. To study the differences between 

products sources and the impact of the cut offs, an inter comparison between the cut-off 

products based on both sensors and an intra comparison within the cut-off products 

based on the same sensor were included in the analysis. 

The intra comparison of the products based on MERIS BA product (FireCCI41) showed 

a similar spatial pattern with the different cut-off thresholds. High FRic was found 

across biomes with high burned area such as savanna, chaparral, and temperate forest 

and grassland indicating more extreme morphological fire trait values when burned area 

is high. Medium-low FRic was found spatially dispersed in the boreal forest and in the 

borders between savannas and tropical forests (Figure 26). On the contrary, medium 

FDis was found in the savannas indicating that most fires have average morphological 

traits.  Higher FDis was found in the temperate and boreal forest indicating that extreme 

trait values are more frequent that average ones. 
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Figure 26: Functional Richness (FRic; (Left) and Functional Dispersion (FDis; Right) obtained from 

MERIS Fire_cci v4.1 (FireCCI41) cut-off 3, 5, 9 and 14. 

Consequently, strong and statistically significant (p-values < 0.001) bivariate 

relationships between FireCCI41 FRic cut-offs (3, 5, 9, and 14) and between FDis cut-

offs (3, 5, 9, and 14) were found (Figure 27). Closer cut-off values experienced higher 

correlations indicating low differences between two subsequent cut-offs for both Fric 

and Fdis, but substantial differences when comparing extreme cut-offs values of 3 and 

14. 

 

Figure 27: R
2
 (p-value < 0.001) of the bivariate relationship of Functional Richness (FRic; Left) and 

Functional Dispersion (FDis; Right) obtained from MERIS Fire_cci v4.1 (FireCCI41) at different cut-offs 

3, 5, 9 and 14. 
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Likewise, the dissimilarity of the trait hyper-volumes between the FireCCI41 cut-offs 3, 

5, 9 and 14 was mostly low (Figure 28) and β-div slightly decreased with medium and 

high cut-offs. High β-div was found mostly in the temperate and boreal forest driven by 

a general high Turn (e.g. dark purplish grid cells in Figure 29) indicating low overlap 

between trait hyper-volumes. Same pattern was observed in Asia and more sparsely 

over the south hemisphere when comparing extreme cut-offs.  

 

Figure 28: Functional β-diversity (β-div) maps at global scale obtained from MERIS Fire_cci v4.1 

(FireCCI41) cut-offs 3, 5, 9 and 14. 

The dissimilarity between the FireCCI41 cut-offs is lower between contiguous cut-offs 

(Figure 28), suggesting that using extreme cut-offs may lead to high variability in the 

analysis of fire patches. A better matching between medium cut-offs is suggesting, that 

using cut-off 5 or 9 at global scale would lead to similar fire patch analysis (Figure 29). 

 

Figure 29: Colour composition of functional β-diversity (β-div), functional Turnover (Turn) and 

functional Nestedness (Nest) obtained from MERIS Fire_cci v4.1 (FireCCI41) cut-off 5-9. 
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The intra comparison of the products based on MODIS BA products (MCD64A1 

collection 6) showed a similar spatial pattern with the different cut-off thresholds 

(Figure 30) as found in FireCCI41. In distinction to FireCCI41, MCD64A1 collection 6 

showed much less grid cells with low FRic in the south hemisphere. Low FRic was 

found mostly in the temperate and boreal forests, as well as in the southeast and 

equatorial Asia. Besides, MCD64A1 collection 6 showed much less grid cells with high 

FDis in the north hemisphere, being located mostly in the temperate forest and 

grassland. 

 

Figure 30: Functional Richness (FRic; (Left) and Functional Dispersion (FDis; Right) obtained from 

MCD64A1 collection 6 cut-off 3, 5, 9 and 14. 

Thus, strong and statistically significant (p-values < 0.001) bivariate relationships 

between MCD64A1 collection 6 FRic cut-offs (3, 5, 9, and 14) and between MCD64A1 

collection 6 FDis cut-offs (3, 5, 9, and 14) were found (Figure 31). The spatial global 

pattern of FRic and FDis generated with cut-off 9 were the most correlated to cut-off 14, 

with respectively r
2 

0.97 and r
2 

0.95. The spatial global pattern of FRic and FDis 

generated with cut-off 3 were the least correlated to cut-off 14 for both FRic and FDis 

with respectively r
2 

0.74 and r
2 

0.68. 
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Figure 31: R
2
 (p-value < 0.001) of the bivariate relationship of Functional Richness (FRic; Right) 

Functional Dispersion (FDis; Left) obtained from MCD64A1 collection 6 at different cut-offs 3, 5, 9 and 

14. 

When comparing the dissimilarities between the MCD64A1 collection 6 cut-offs 3, 5, 9 

and 14, we observed low (Figure 32) β-div slightly decreasing with high cut-offs. High 

β-div was found mostly in the temperate and boreal forests driven by high Turn (e.g. 

dark purplish grid cells in Figure 33) and locally a high Nest in central Canada (e.g. 

dark bluish grid cells in Figure 33). 

 

Figure 32: Functional β-diversity (β-div) maps at global scale obtained from MCD64A1 collection 6 cut-

offs 3, 5, 9 and 14. 
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The dissimilarity between the MCD64A1 cut-off 3 and 5 is higher than when comparing 

FireCCI41 cut-offs, suggesting that given the shorter temporal resolution of MODIS, 

small cut-off values may generate more variability in fire patches construction than 

FireCCI41. On the contrary, the good match between higher cut-offs in MCD64A1 is 

suggesting that using cut-off 9 and 14 at global scale provide similar information in 

terms of fire shape (Figure 33) compared to FireCCI41 for which the differences 

between cut-offs 9 and 14 still relevant. 

 

Figure 33: Colour composition of functional β-diversity (β-div), functional Turnover (Turn) and 

functional Nestedness (Nest) obtained from MCD64A1 collection 6 cut-off 9-14. 

 

The inter comparison of the FRic and FDis generated from MERIS (FireCCI41) and 

MODIS (MCD64A1 collection 6) BA products with cut offs 3, 5, 9 and 14 showed 

weak but statistically significant (p-values < 0.001) bivariate spatial relationships 

(Figure 34). For FRic, highest correlations (r
2
>0.08) were observed between MCD64A1 

cut-off 3 with all cut-off values of FireCCI41 and, between FireCCI41 cut off 14 and all 

cut-off values of MCD64A1. This result suggests that low cut-offs used for fireCCI41 

(experiencing the lowest temporal resolution) generate high discrepancies with 

MCD64A1 regarding extreme morphological traits.  

For FDis, correlations are higher than FRic (r
2
>0.25) but still low, and they are almost 

similar whatever the cut-offs and the products. This suggests lower effects of cut-offs 

and products fire patches with average fire traits composing the hyper-volumes than on 

extremes as identified with FRic. 
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Figure 34: R
2
 (p-value < 0.001) of the bivariate relationship of Functional Richness (FRic; Left) 

Functional Dispersion (FDis; Right) obtained from MERIS Fire_cci v4.1 (FireCCI41; Top) and 

MCD64A1 collection 6 (Left) at different cut-offs 3, 5, 9 and 14. 

The dissimilarity between FireCCI41 and MCD64A1 collection 6 cut-offs 3, 5, 9 and 14 

was diverse (Figure 35 and Figure 36). Low β-div was found in areas with a high 

burned area, while high β-div was found not only in areas with high fire activity, but 

also medium and low fire activity, a somewhat similar pattern and values as observed 

with the intra-product comparison. Fire patches generated by pixel-level burn date are 

then similarly sensitive to sensors and cut-off values. 

 

Figure 35: Functional β-diversity (β-div) maps at global scale obtained from MERIS Fire_cci v4.1 

(FireCCI41) cut-offs 3 (Left) and 5 (Right) and MCD64A1 collection 6 cut-offs 3, 5, 9 and 14. 
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Figure 36: Functional β-diversity (β-div) maps at global scale obtained from MERIS Fire_cci v4.1 

(FireCCI41) cut-offs 9 (Left) and 14 (Right) and MCD64A1 collection 6 cut-offs 3, 5, 9 and 14. 

High β-div located in tropical Asia, temperate and boreal forests as well as in the 

Australian savannas, was driven by a high Turn (e.g dark purplish grid cells in Figure 

37), so that the fire trait hyper-volumes tend to only partly overlap.  High β-div located 

in the tropical forest and savannas in the south hemisphere, was driven by a high Nest 

(e.g dark bluish grid cells in Figure 38), suggesting that the fire trait hyper-volume from 

one sensor is included in the other, with missing some fire types. 

 

 

Figure 39: Colour composition of functional β-diversity (β-div), functional Turnover (Turn) and 

functional Nestedness (Nest) obtained from FireCCI41 cut-off 14 and MCD64A1 collection 6 cut-off 5. 

Similarly when comparing the global spatial pattern between FireCCI41 and MCD64A1 

collection 6 fire patches products, the mismatches between the products evidence the 

different characteristics of the BA products based on MERIS and MODIS sensors, but 

may be also the burn date uncertainties. For example, a high translation between the 
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volumes may be related with extreme cases of fire morphological traits besides burn 

date uncertainties as in boreal forest, when fires may burn for long time and where 

ground fires may re-burn after a while. Thus, a high inclusion between the volumes may 

be related with the fact that fire patches based on MERIS are generally more fragmented 

than fire patches based on MODIS BA products, as in between tropical forest and 

savannas where fires tend to be large. 

From this global scale analysis, the following conclusions can be obtained: 

 The trait-based approach describing functional spaces of fire patch 

morphological traits reveal similar global patterns of patch assemblages between 

FireCCI41 and MCD64A1 collection 6, with peculiar correspondences between 

products regarding their cut-offs values.  

 Diversity (FRic) of fire morphological traits is higher in areas of high burned 

area.  

 Dispersion (FDis) of fire patches in the morphological traits space is higher in 

areas of low to medium burned area. 

 Even if the general spatial pattern along the cut-offs is maintained, within 

FireCCI41 cut-offs, medium are the more similar ones, while within MCD64A1 

collection 6, high ones are the more similar ones. 

 Fire patches based on MERIS are more fragmented than patches based on 

MODIS. 

 Fire patches derived from burned-date at the pixel level are similarly sensitive to 

sensors and cut-off values. 

 The global relationships observed between MCD64A1 and FireCCI41 fire 

patches may change across regions, for example, in boreal or temperate forests 

in North America. 

4. Uncertainty on fire patch morphology: comparing the assemblage 

of patches between different BA products and between cut-off 

thresholds for a given BA product  

4.1.  Morphological traits and power law maps 

The resulting fire patch databases from the FireCCI41, FireCCI50 and SFD BA 

products were compared with the MCD45A1 collection 5 (only for FireCCI41) and 

MCD64A1 collection 6 products. The focus was put on fire frequency and 3 metrics 

from the database which are sufficient to represent most of the complexity of fire patch 

shapes: the fire size (computed from the standard deviation ellipse), the ellipse ratio and 

the shape index (from pixel data). For each of these quantities, their mean value and 

standard deviation in 1º×1º grids were computed. Fire patches with less than 5 cells 

were removed, because they do not allow computing reliable fire morphological traits. 

Since the effective size (in hectares) of a 5-pixel fire decreases toward high latitudes, for 

each product all fire patches smaller than the area of a 5-pixel fire patch at nadir were 

removed. This corresponds to a fire size of 27 ha for FireCCI50, 45 ha for FireCCI41, 

and 107 ha for MODIS. 

The relation between the fire frequency Nf and the fire size Af was studied. Many 

studies have tried to explain fire size distribution with self-organized criticality (SOC) 

(Bak 1987, Malamud 1998, Clar et al. 1999). In these models, the relation between Nf 

and Af follows a power law: 
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𝑁𝑓 = 𝛼. 𝐴𝑓
−𝛽

 

where α is a normalization constant and β is the exponent of the power law. SOC 

models predict a constant value of β, but numerous analyses have detected significant 

variations of this parameter at a global scale (Pueyo 2007, Hantson et al. 2015). It is 

therefore necessary to investigate potential discrepancies between different BA products 

and different patch reconstruction techniques. 

For each fire patch database, the parameter β was fitted in a global 1º×1º grid. For each 

cell, the following procedure was performed:  

1. The profile histogram of Nf and Af was produced, which is defined as the 

normalized number of fires Nf for different logarithmic bins of fire size.  

2. A Poisson uncertainty equal to the square root of the number of fire patches in 

each size bins was attributed to each value of the profile histogram.  

3. The power law was then fitted by using the Minuit minimization algorithm 

(https://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/, 

accessed March 2017), which provides an efficient way to realize chi-squared 

minimization.  

An example of fit is displayed on Figure 40. The map of the uncertainty on β, σβ, and 

the chi-squared value were also produced because they are necessary to assess the 

quality of fit. Figure 41 shows the comparison of the β parameter when computed from 

Aellipse or Apixel. For FireCCI41, β is slightly higher when computed from the elliptical 

shape than when computed from the pixel shape. This difference is even higher for 

MCD45A1 collection 5 and MCD64A1 collection 6.  

 

Figure 40: Example of a power law fit 

https://seal.web.cern.ch/seal/snapshot/%20work-packages/mathlibs/minuit/
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Figure 41: Difference between β parameter computed from Aellipse and from Apixel from FireCCI41 (top), 

MCD45A1 collection 5 (middle) and MCD64A1 collection 6 (bottom). 
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4.2. Comparison between BA global products 

4.2.1. Comparison between FireCCI41, MCD45A1 and MCD64A1 

Figure 42 displays the fire density maps for the FireCCI41, MCD45A1 collection 5 and 

the difference between the two products, for a cut-off value of 5. The maps for 

MCD64A1 collection 6, and the difference between this product and FireCCI41 are 

displayed in Figure 43. When the difference between FireCCI41 and one of the MODIS 

products is computed, the MODIS product was always restrained to the years 2005-

2011. For all products, the pattern of fire density follows burned area: the highest values 

are reached in Africa (Northern (NHAF) and Southern (SHAF)), followed by South 

America (Southern Hemisphere (SHSA), the northern part of Australia and central 

Eurasia. When comparing FireCCI41 and MCD45A1 collection 5 over the years 2005 

to 2011, FireCCI41 exhibits a significantly higher fire patch density than MODIS for 

the aforementioned regions, excepted for the western part of SHAF and some areas in 

SHSA. This is probably due to the missing data in MERIS imagery for these regions. 

MCD45A1 also yields more fire patches in North America agricultural regions, in 

central Asia (CEAS) and in the NHAF regions close to the rainforest or the Sahelian 

region. The results are very similar when comparing FireCCI41 to the MCD64A1 

collection 6 derived database, excepted for Central Asia and North America where the 

agreement is better than with MCD45A1. This could arise from missed burnt pixel 

seeds by the Fire_cci algorithm. The 3-day time of overpass can lower the probability to 

match burned pixels detected by MERIS imagery with active fire pixels from MODIS if 

there is a strong delay between the two detections. This suggests that the temporal 

resolution of the sensors is an important parameter for detecting individual fire events 

when using a two-step algorithm approach to detect BA. 

The resulting maps of the β parameters for MCD45A1 collection 5 and FireCCI41 are 

shown in Figure 44 with their uncertainties, the difference between the two products, 

and the level of agreement in number of standard deviation. The lower limit of the fit 

range of all products is 107 ha, and the upper limit is 100 000 ha for all products. The 

difference between the β parameter from the Fire_cci and MCD45A1 collection 5 

products is also shown. As for fire density, the structure of the β parameter is similar 

between the two fire patch datasets, with higher values in NHAF, SHAF, India, central 

Eurasia and southern Brazil. The high value of β means that the proportion of small 

fires with respect to the number of big fires is higher in these regions. The uncertainty 

on the β parameter closely follows the spatial distribution of fire density because a 

higher number of fires in a sub-cell yield a smaller Poisson uncertainty, and therefore, a 

smaller uncertainty on the β parameter. The value of the β parameter is globally higher 

(which corresponds to a steeper power law) for FireCCI41 than for MCD45A1 

collection 5. Under the assumption that the probability of missing big fires is low, this 

means that, due to its better resolution, the FireCCI41 product detects a higher number 

of small fires than the MODIS product. The results are similar when switching 

MCD45A1 with MCD64A1. 
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Figure 42: Fire density (km
-2

) for FireCCI41 (top left), and MCD45A1 collection 5 (top right). The 

difference between the two products is displayed for the years 2005-2011. 

 

Figure 43: Same as Figure 42, with the MCD64A1 collection 6 product instead of MCD45A1 collection 

5. 

The tendency is inverted for croplands in central Eurasia and India for MCD45A1 

collection 5, where the MODIS product presents a steeper power law than the 

FireCCI41 product. However, when FireCCI41 is compared to MCD64A1 collection 6 

(Figure 45), the difference is reversed in India, and its amplitude is reduced in Central 

Eurasia. This effect is surprising because FireCCI41 is expected to detect more small 
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fires. However, most of the fire in central Eurasia originates from agricultural activities: 

such crop fires are small, controlled fires with a short duration time, and could therefore 

be easily missed by the two-steps approach of the Fire_cci algorithm.  

The level of agreement between the FireCCI41 and MCD45A1/MCD64A1 products is 

generally good, with most cells matching within 2 sigmas, except for Africa where the 

fitted β do not match even within 5 sigmas. It should be noted that we used Poisson 

uncertainties for the fit of the power law, which frequently gives an underestimation of 

uncertainties. This can degrade the diagnosed level of agreement between the two 

products. 

 

Figure 44: Map of β parameter for the FireCCI41 (2005-2011) product (top left) and its uncertainty 

(middle left), for the MCD45A1 collection 5 product (2000-2016) (top right) and its uncertainty (middle 

right), the difference between the two products (bottom right) and the level of agreement between the two 

products (bottom right). The power law is only computed when there are more than 10 detected individual 

fires in the cell. 
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Figure 45: Same as Figure 44, with MCD64A1 collection 6 instead of MCD45A1 collection 5. 

Figure 46 and Figure 47 show the shape index for all products. Fire patches smaller than 

107 ha were removed from the FireCCI41 product (which corresponds to the 5-pixel 

fire size cut applied on the MODIS products) in order to compare the same size 

category between the two products. As expected, due to its better spatial resolution, and 

the ‘growing’ phase of the Fire_cci algorithm, FireCCI41 detects more complex fire 

patches than any of the MODIS products. Nevertheless, the shape index pattern is very 

similar between the products, even for small-scale variations (NHAF, SHAF and 

Australia (AUST)). Fire patches are usually much more complex at high latitude 

(Boreal Asia (BOAS) and Boreal North America (BONA)). This effect probably arises 

from a projection effect, since high latitude pixels cover a smaller area than pixels 

located close to the equator. This results in the same fire patch being made up of more 

pixels at high latitudes, which can result in an artificially higher shape complexity. 
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Figure 46: Shape Index for the FireCCI41 product (top left), for the MCD45A1 collection 5 product (top 

right). 

 

Figure 47: Same as Figure 47, with MCD64A1 collection 6. 

4.2.2. Comparison between FireCCI50, FireCCI51 and MCD64A1 

Following the same approach as for the comparison between FireCCI41 and 

MCD64A1, we compared the FireCCI50 and FireCCI51 fire patch databases with 

MCD64A1 (between 2001 and 2016). Figure 48 displays the results for the fire patch 

density, Figure 49 for the Shape Index, and Figure 50 for the fit of the power law. The 

results are similar than for the comparison with FireCCI41. Due to its better resolution, 

the FireCCI50 yields more individual fire patches than MCD64A1 in regions with high 

fire path density. In the areas where FireCCI41 detected significantly less fire patches 

than MCD64A1 (in some areas of SHAF and SHSA) because of missing data in MERIS 

imagery, the FireCCI50 also detects more fire patches than MCD64A1. The other areas 

where MCD64A1 detects more fires are also probably linked to missed burned pixel 

seeds by the algorithm. 

The fitted β parameter is globally higher for FireCCI50 than for MCD64A1, meaning 

that FireCCI50 detects more small fires than MCD64A1. The tendency is reversed is 

central Eurasia, where the power is steeper for MCD64A1. 

The general agreement is lower between MCD64A1 and FireCCI50 than between 

MCD64A1 and FireCCI41. This is not surprising, because we expect FireCCI50 to 

detect even more small fires than FireCCI41, explaining why the agreement of the fire 

size distribution is lower with MCD64A1.    
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Figure 48: Same as Figure 42 and Figure 43, with the FireCCI50 instead of FireCCI41. 

 

Figure 49 shows the Shape Index for FireCCI50 and MCD64A1. As expected, the 

Shape Index is much higher for the Fire_cci product, due to the better resolution and the 

choice of using a two-step algorithm.  

 

Figure 49: Same as Figure 46 and Figure 47, with FireCCI50 instead of FireCCI41. The 107 ha cut is 

applied. 
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Figure 50: Same as Figure 44 and Figure 45, with FireCCI50 instead of FireCCI41. 

 

Figure 51 shows the density of fire events for FireCCI51 compared with MCD64A1. As 

expected, the results are similar than those obtained with FireCCI50, and FireCCI51 

usually detects more individual fires than MCD64A1 everywhere on the globe thanks to 

its finer spatial resolution. As for FireCCI50, there are still some areas (in Central Asia 

and Sahel) where MCD64A1 detects more fires than FireCCI51, but these areas are 

much smaller than for FireCCI50. 

The agreement for the power law maps (Figure 52) is also better between FireCCI51 

and MCD64A1 than between FireCCI50 and MCD64A1. The ameliorations are not 

only restricted to areas of limited agreement (i.e., Africa and South America), but 

impact the global fire size distribution of fire patches. Combining the results from 

Figure 51 and Figure 52, we can conclude than FireCCI51 detects more small fire 

patches than MCD64A1, since for larger fire patches (> 107 ha) the fire patch size 

distribution are in fair agreement with MCD64A1. 

Figure 53 displays the average shape index of FireCCI51 compared with MCD64A1. As 

for FireCCI50, the higher resolution of FireCCI51 with respect to MCD64A1 yield 



 

 

Fire_cci 
Climate Assessment Report 

Ref.: Fire_cci_D5.1_CAR_v1.4 

Issue 1.4 Date 16/11/2018 

Page 50 
    

higher shape index at global scales (more complex fire patches). However, the values 

are slightly lower than for FireCCI50. 

 

Figure 51: Same as Figure 41 and Figure 42, with FireCCI51 instead of FireCCI41. 

 

Figure 52: Same as Figure 45 and Figure 46, with FireCCI51 instead of FireCCI41. The 107 ha cut is 

applied. 
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Figure 53: Same as Figure 31 and Figure 32, with FireCCI51 instead of FireCCI41. 

4.3. Influence of the cut-off on fire morphological traits 

Figure 54 shows the variation of the β parameter, shape index and ellipse ratio, 

averaged in each GFED4 region and for all products. For MCD45A1/MCD64A1, only 

the years 2005-2011 are displayed, and fires smaller than 107 ha are removed from 

FireCCI41. The results for the 4 cut-off values (3, 5, 9 and 14) are displayed.  

A higher threshold yields a smaller β, because the flood-fill algorithm will group 

together smaller fires as one. This results in a reduction of the number of small fires and 

an augmentation of the number of big fires, therefore a less steep power law. The 

variation between different cut-off values is higher than the variation between 

FireCCI41and MCD64A1 collection 6. This suggests that the reconstructed fire patch 

size is compatible between FireCCI41 and MCD45A1/MCD64A1, when comparing 

fires bigger than 107 ha. 

The cut-off value has a limited influence on the complexity of the reconstructed patches. 

For the Shape Index, the difference between FireCCI41 and the 2 MODIS products is 

much higher than the variation between different cut-off values for the same product. 
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However, up to a normalization factor, the averaged values of Shape Index are 

compatible between all products, with higher values in BONA and BOAS (as discussed 

in Section 4.2), lower values in Equatorial Asia (EQAS), and constant values for the 

other GFED4 regions. For the Ellipse Ratio, the behaviour is quite similar to the Shape 

Index. Higher cut-off yields more elongated patches, and the Ellipse Ratio for the 

FireCCI41 product is globally higher than for the MODIS products.  

 

Figure 54: Averaged values of the β parameter (top left), Shape Index (top right) and Ellipse Ratio 

(bottom) for MCD45A1 collection 5 (blue), MCD64A1 collection 6 (green) and FireCCI41 (red). The 

results for 4 cut-off values are displayed. 

4.4.  Fire patch morphological traits with the FireCCISFD10 BA product 

Figure 55 to Figure 58 display the resulting 0.25º×0.25º grid maps for the Small Fire 

Dataset (SFD) Fire_cci v1.0 (FireCCISFD10) BA product for Northern Hemisphere 

Africa, from January to September 2016. The very high resolution of the Sentinel-2 

sensors (20x20 m at nadir) allows the detection of very small fires that cannot be 

detected by MERIS or MODIS. As a result, the maps of fire morphological maps 

exhibit very clear structures, even on such a short time span. 

Fire density (Figure 55) is higher in the tropical savannas of NHAF, and gradually 

diminishes toward the Sahelian region. Countries exposed to the higher number of fire 

events during the considered time period were Guinea, Sierra Leone, Benin, Togo, 

Central African Republic, South Sudan and Uganda. The beta parameter of the power 

law is also higher in savannas, and lower in the Sahel, but its small scale structure is 

slightly different from the fire density. The regions with higher beta parameter (Figure 

56) follow closely the distribution of agricultural fires from Magi et al. 2012. The 

higher values for the beta parameter are reached in Cameroon, Togo and Benin, where 

Magi et al. have shown that more than 80% of the fires come from agricultural 

activities. Since agricultural fires are smaller than natural fires, this can result in a 

steeper power law in these regions. 
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Figure 55: Fire density (km
-2

) for the FireCCISFD10 BA product (from January to September 2016) 

 

Figure 56: Beta parameter for the FireCCISFD10 BA product (from January to September 2016) 

The Shape Index (Figure 57) also displays strong region patterns, with higher values in 

Cameroon, Central African Republic and South Sudan. It does not appear to be 

correlated with fire density and beta parameter. However, high values of Shape Index 

seem to be correlated with lower value of the Ellipse Ratio (Figure 58), which suggests 

that complex fire patches are more elongated than simpler fire patches.  

 

Figure 57: Shape Index for the FireCCISFD10 BA product (from January to September 2016) 
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Figure 58: Ellipse Ratio for the FireCCISFD10 BA product (from January to September 2016) 

Figure 59 to Figure 62 shows the maps for the FireCCISFD10 and MCD64A1 products 

during their overlapping time series. As expected, the density of fire patches is much 

higher for the FireCCISFD10 product (Figure 59), in all cells. The β parameter of the 

power law is also steeper in these areas, meaning that the FireCCISFD10 product 

performs better than MCD64A1 at detecting small fire patches. This explains why the 

level of agreement of β between the two products is limited. 

 

Figure 59: Fire density (km
-2

) for the FireCCISFD10 product (top left), MCD64A1 collection 6 (top 

right). The difference between the two products is displayed during the time span covered by the 

FireCCISFD10 product. For the sake of product inter-comparison, only fires bigger than 107 ha are 

displayed. 
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Figure 60: Map of β parameter for the FireCCISFD10 product (top left) and its uncertainty (middle left), 

for the MCD64A1 collection 6 product (top right) and its uncertainty (middle right). The difference 

between the two products (bottom left) and the level of agreement between the two products (bottom 

right) are also displayed. The power law is only computed when there are more than 10 detected 

individual fires in the cell. 

Averaged values of Shape Index are much higher for the FireCCISFD10 product than 

for the MCD64A1 product, because its high resolution allows detecting accurate fire 

patch perimeter. However, the variations of Shape Index within each survey do not 

follow the same pattern. For example, FireCCISFD10 clearly detects more complex fire 

shapes in Sudan than MCD64A1.  

On the other hand, Figure 62 shows that the averaged Ellipse Ratio is similar between 

the two products: all cells are in agreement within 1 sigma for fire bigger than 107 ha. 

The absence of clear geographical pattern of Ellipse Ratio in the FireCCISFD10 product 

after removing the fire patches smaller than 107 ha might suggest that only the 

elongation of small fires is sensitive to climatic or environmental factors. 

 

Figure 61: Maps of Shape Index for the FireCCISFD10 product (left) and the MCD64A1 Collection 6 

product (right). Only fires bigger than 107 ha have been used to compute the maps. 
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Figure 62: Maps of Ellipse Ratio for the FireCCISFD10 product (top left) and the MCD64A1 Collection 

6 product (top right). The difference between the two products (bottom left) and the level of agreement 

(bottom right) are also displayed. Only fires bigger than 107 ha have been used to compute the maps. 

5. Looking for relationships between different driving factors and fire 

size 

5.1. Relationship between fire intensity and fire size 

In this section, the relationship between fire intensity (FI) and fire size (FS) was 

analysed. To retrieve fire intensity information for each derived fire patches, the 

MCD14ML global product was used (Giglio et al. 2006), which provides the list of 

geographic coordinates of individual active fire pixels detected by the MODIS sensor 

on the Terra and Aqua satellites for the period 2000-2017 with a resolution of 1x1km, 

along with their Fire Radiative Power (FRP). FRP is used here as a proxy of fire 

intensity (Wooster et al. 2005, 2013). To associate active fire pixels with fire patches, 

the following procedure was used: 

1. for a given fire patch, all active fire pixels that belong to the ellipse fitted over 

the fire patch were determined, which means that their centres (x, y) follow the 

equation: 

((𝑥 − 𝑥0)𝑐𝑜𝑠(𝜃) + (𝑦 − 𝑦0)𝑠𝑖𝑛(𝜃))
2

𝑎2
+

((𝑥 − 𝑥0)𝑐𝑜𝑠(𝜃) + (𝑦 − 𝑦0)𝑠𝑖𝑛(𝜃))
2

𝑏2
< 1 

where (x0, y0) is the centre of the standard deviation ellipse (SDE), θ is the 

clockwise rotation angle of the semi-minor axis with respect to the north, a is the 

semi-major half-axis and b is the semi-minor half-axis. Since the side of an 

active fire pixel is 1km, we also consider that an active fire pixel located at a 

distance of 1km or less from the area covered by the SDE belong to the fire 

patch. 
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2. The detection date of the active fire pixel must lie between the minimum and 

maximum burn date of the fire patch. To account for possible timelag between 

the detection of an active fire pixel and of burned area, a 30-days buffer is used. 

Once all active fire pixels have been associated with fire patches, the average fire 

intensity is computed for each fire patch. The matching sometimes fails to associate 

active fire pixel to any fire patch. The number of mismatch decreases as the cut-off 

raises. This effect suggests that, for low cut-off value, a real fire event can be split in 

smaller fire patches by the flood-fill algorithm.  

In order to ensure that the results do not depend on the cut-off value, the analysis has 

been performed for MCD64A1 (Figure 63 and Figure 64) and FireCCI41 (Figure 65 and 

Figure 66) using the most extreme cut-off values (namely 3 and 14). For FireCCI50 and 

FireCCI51, we used the fire patch database obtained with a cut-off of 5 days (Figure 67 

and Figure 68). The median, 25
th

 and 75
th

 percentiles of fire size for different fire 

intensity bins are displayed, and their colour represents the median minimum burn date 

of the fire patches contained in each fire intensity bins. 

 

Figure 63: Median fire size (from MCD64A1, co=14 days) vs fire intensity from the MCDML14 

datasets. The error bars show the 25
th

 and 75
th

 percentiles of fire size. The colour of the dots and error 

bars represent the median burn date of fire patches in each bins. The background bars (associated with the 

right scale on the plots) represent the histograms of the number of fire patches in each FRP bins. 
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Figure 64: Same as Figure 63, with co=3 days. 

 

Figure 65: Same as Figure 63, with FireCCI41 (2005-2011). 
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Figure 66: Same as Figure 63, with FireCCI41 (2005-2011) and co=3 days. 

 

Figure 67: Same as Figure 63, with FireCCI50 and co=5 days. 
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Figure 68: Same as Figure 63, with FireCCI51 and co=5 days. 

For MCD64A1 and a cut-off of 14 days (Figure 63), a humped relationship between fire 

size and fire intensity is observed for the equatorial regions of GFED (CEAM, EQAS 

and SEAS). At low fire intensity values, the median and quantiles of fire size first 

increase with fire intensity. A threshold is then reached at low to intermediate fire 

intensity. Fire patches associated with high fire intensity have a higher median burn 

date, meaning that they tend to occur later in the fire season. In NHAF, NHSA, SHAF, 

SHSA, and AUST, the relationship between the median and quantiles of FS vs FI is 

similar than the one observed for equatorial biomes. However, the maximum fire size is 

usually reached at higher intensity threshold, and the decrease after the threshold is 

more gradual. The relationship is similar in BOAS. By contrast, in BONA, TENA, 

EURO, and CEAS, fire size constantly increases with intensity and only reaches a 

maximum value at very high intensity. The results are similar with FireCCI41, 

FireCCI50, and FireCCI51, except for AUST, where the fire intensity is reached earlier 

than for MCD64A1. In addition, for FireCCI50 and FireCCI51, the slope between fire 

size and fire intensity for BONA and TENA is smaller than for MCD64A1 and 

FireCCI41. 

The evolution of the β parameter along the fire season is shown in Figures Figure 69 to 

Figure 72. In each 1x1 degree cell, the fire season has been split in 3 temporal periods: 

the early fire season (the 4 months before the month with highest fire activity), the 

middle fire season (corresponding to the month with the highest fire activity) and the 

late fire season (the 4 months after the month with the highest fire activity). For each 

period and in each cell, the corresponding β parameter (namely βbegin, βmiddle and βend) 

have been computed, and are displayed for MCD64A1, FireCCI41 and FireCCI51. For 

both products, the β parameter increases at the end of the fire season, meaning that a 

highest proportion of small fires happened at the end of the fire season. These results are 
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in agreement with the change of median burn date from Figure 63 to Figure 68, which 

also show that fire size is significantly smaller in the late season in SEAS and NHAF. 

 

Figure 69: Values of βbegin, βmiddle and βend for MCD64A1 (co=14 days), and differences between βbegin 

and βend. 

 

Figure 70: Values of βbegin, βmiddle and βend for FireCCI41 (co=14 days), and differences between βbegin and 

βend. 

 



 

 

Fire_cci 
Climate Assessment Report 

Ref.: Fire_cci_D5.1_CAR_v1.4 

Issue 1.4 Date 16/11/2018 

Page 62 
    

 

Figure 71: Values of βbegin, βmiddle and βend for FireCCI50  (co=5 days), and differences between 

βbegin and βend. 

 

Figure 72: Values of βbegin, βmiddle and βend for FireCCI51 (co=5 days), and differences between 

βbegin and βend. 

Rothermel’s equation is used to model fire rate of spread in most process-based 

DGVMs (Rothermel 1972, Thonicke et al. 2010, Yue et al. 2014). In this model, the rate 

of spread scales with wind velocity, landscape slope, and fire intensity. It has been 

tested on experimental and localized fires, which do not account for the real complexity 
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of the fuel array. For tropical and equatorial GFED regions, our results clearly show 

that, toward the end of the fire season, fire size reach a limit as fire intensity continue to 

increase, probably because the fuel becomes dryer (Sedano and Randerson 2014). This 

suggests that larger fires hit some natural or artificial barriers (roads, fragmentation of 

landscape due to agriculture).  

5.2. Influence of wind speed and wind orientation on fire patch geometry 

and orientation 

CRUNCEP reanalysis data was used (https://rda.ucar.edu/datasets/ds314.3/, accessed 

September 2018) which provides in a 0.25º×0.25º grid the U and V-wind speed 

components every 6 hours. We computed at each fire patch position the mean wind 

speed v̄wind between the minimum and maximum burned date of the patch. Figure 73 

shows the evolution of fire size with v̄wind. For all continents, we clearly see a decrease 

of fire size with wind speed when higher wind speeds are reached: this result is in 

agreement with the findings of Lasslop et al. (2015). It is important to investigate this 

effect further since it is not accounted for in fire propagation models, and could yield an 

overestimation of burned area. 

 

Figure 73: Fire size (derived from the fitted ellipse) versus mean wind speed (in m.s−1) from the 

minimum BD to the maximum BD. 

In order to study if the patch orientation follows wind orientation, the mean angle of the 

wind orientation within the burned date span was also computed, weighted by the value 

of the wind speed. This allows recovering a main wind direction for each fire patch. The 

correlation coefficient r was measured from linear regression between wind direction 

and the orientation of the ellipse θ, in a 1º×1º grid. In order to limit the loss of signal 

due to the uncertainty on patch orientation, this study was limited to patches of 

intermediate size (bigger than 500ha and smaller than 2000ha), since bigger fire are less 

likely to exhibit a unique fire propagation orientation, and since the uncertainty on 

smaller fires can be large because of omission and commission errors. The resulting 

map, displayed on Figure 74, shows no positive correlation between θ and wind 

orientation. However, it has to be kept in mind that NCEP wind data accuracy is very 
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limited, and that can explain why the analysis failed to find a clear correlation with fire 

patch orientation. 

 

Figure 74: Correlation factor r between wind orientation and ellipse orientation. 

5.3. Burned Pixel-derived fire patch morphology as an indicator of 

spreading process and their environmental drivers 

We finally tested the benefit of pixel-level burned area data generated by global remote 

sensing to derive fire patch morphology, and how the morphological features of fire 

patches could be the witness of differential spreading processes across biomes, a key 

information for the improvement of fire modules in DGVMs. We focused our analysis 

in savannas, the most fire-prone biome worldwide, to determine if regional climate or 

other environmental variables were leading to specific fire patch morphology. 

We based this research on the previously FRY database (Laurent et al., 2018) of global 

fire patch morphology, derived from the pixel-level burned are data FireCCI41. 

Describing the morphology of fire patches relies on the landscape indices used for 

landscape description, and widely described in the FRAGSTATs Software (McGarigal 

and Marks, 1995). For each single fire patch, FRY database measured fourteen 

morphology features classified in 6 categories: Size, Complexity, Orientation, 

Elongation, Propagation and Fire Intensity (Table 2). We selected fire patches located in 

tropical savannas and grasslands between 25°N and 25°S latitudes in Africa, Australia 

and South America. We excluded fires smaller than 300 ha to increase the robustness of 

the complexity features based on early results of Nogueira et al (2016) in tropical South 

America. In total, we included 2.194.825 fire patches in the analyses.   

The location of fire patches was referenced according to three sources of information: 

the GFED regions from the Global Fire Emissions Database (Giglio et al., 2010), the 

pyrome regions (Archibald et al., 2013) and the Global Anthromes classification (Ellis 

et al., 2010). We completed the dataset by including the information on land cover 

according with MODIS Land Cover Global product (MCD12C1) for 2012 (Friedl et al., 

2010). We included five categories from the IGBP classification: woody savannas (class 

8), savannas (class 9), grasslands (class 10), cropland (class 12) and mosaic of cropland 

and natural vegetation (class 14). We also included the percentage of tree cover based 

on the product MOD44B from MODIS (DiMiceli et al., 2011). Finally, we added the 
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information of the yearly mean wind speed and direction from the CRUNCEP dataset 

(Viovy, 2018) providing daily north-south (v) and east-west (w) wind components. 

 

Table 2: Description of the morphology of fire patches features (updated from Nogueira et al. 2016) 

Feature 
category 

Feature Definition Units 

Size Area (A) Surface area of the patch  ha.km-
2
 

Core area (C) 
Surface of area of the internal part of a 
patch delimited by a boundary located 
500m inside its actual boundary 

 

Perimeter (P) Length of the perimeter of the patch M 

Complexity 
Perimeter-Area ratio 

𝑷

𝑨
  

Shape Index (SI) 𝑺𝑰 =
𝑷

𝑨𝟎,𝟓
  

Fractal Dimension Index 
(FD) 

𝑭𝑫 =
𝟐 𝐥𝐧(𝑷)

𝐥𝐧(𝑨)
  

APE ratio (APE) 𝑨𝑷𝑬 =
𝑨𝒓𝒆𝒂 𝑬𝒍𝒍𝒊𝒑𝒔𝒆

𝑨𝒓𝒆𝒂
  

Orientation 
Theta angle 

Sinus of azimuthal angle of the longest 
axis of the fitted ellipse 

degree 

Elongation 
Ellipse ratio 

Degree of divergence between a perfect 
circle and an elliptical shape 

1 = Circle, 
0 = Ellipse 

Eccentricity 
Degree of divergence between a perfect 
circle and an elliptical shape 

1 = Ellipse, 
0 = Circle 

Propagation 
ROSL 

Rate of spread linear along the longest 
ellipse axis 

Linear 
m.day-1 

ROSa 
Rate of spread based on daily area 
burned 

ha.day-1 

Fire Intensity FRP Satellite derived fire radiative power  

 

We first evaluated the differences in the mean values of the five selected fire patch 

morphological features for the different GFED regions (Australia, North Hemisphere 

Africa, South Hemisphere Africa, North Hemisphere South America and South 

Hemisphere South America) and land cover type (box plot of Figure 73). To get this 

information, we built a global 2º x 2º grid and we assigned every fire patch to a grid cell 

(site = 731 grid cells). We calculated the median value for each selected fire patch 

morphological feature in each grid cell. To explain the spatial variation in the fire patch 

morphology patterns on global savannas and grasslands, we averaged the quantitative 

environmental variables for each grid cell (Tree cover, Mean Annual Rainfall, Wind 

speed) and we calculated the proportion of each category of the quantitative 

environmental variables (Land Cover and Wind direction) for each grid cell. Wind 

direction was classified in 4 categories according to its deviation angle from the North: 

0 (North-South), 0 - 45 (Northeast – Southwest), 45 - 90 (East-West) and 90 - 135 

(Northwest – Southeast). We used the general assumption that fire spread follows an 

ellipse, for which the direction of the longest axis is driven by wind direction or 

topography, and the elongation (ratio between the longest and shortest axis) is driven by 

wind speed. This assumption is used in the theoretical fire spread process embedded in 
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global dynamic vegetation models (Hantson et al. 2016). Patch complexity is assumed 

to be affected by landscape fragmentation by natural and human causes, thus, areas with 

a high tree cover or cropland cover should have a higher complexity index values 

compared with areas where the herbaceous layer is more homogenous and continuous 

(e.g. Herbaceous savannas and grasslands areas). We expected thus strong response of 

a) Fractal dimension index to the percentage of tree cover and land cover type; b) ROSL 

(fire spread) to wind speed and land cover type; and c) theta to the prevailing wind 

direction. First, we formulated simple linear regression models to test the relationship 

between the dependent variable to the different predictor variables. We verified the 

normality and the homoscedasticity of Theta, ROSL and Fractal dimension index by 

building the quantile-quantile q-q plot and by plotting the residuals against the predicted 

values. When the assumptions of these models were confirmed, we compared the lineal 

models to Generalized Additive Models (GAM) and Generalized Additive Mixed 

Models (GAMM), which could better capture non-linear relations between the 

modelled. GAM allowed to use nonparametric smoothed functions to explain the 

response of the response variable to predictors by adding several explanatory variables. 

Because ROSL did not show a normal distribution and did not attaint the assumption of 

the variance homogeneity, we fixed the variance structure with a Generalized Least 

Square (GLS) by using the VarPower function. 

5.3.1. Fire patch pattern across continents  

We observed a low variation in the Area and Ellipse ratio when we compared the five 

GFED regions (Figure 75A, B). In the five GFED regions, fire patch area was smaller 

on cropland and mosaic of cropland and native vegetation in contrast with savanna, 

woody savanna and grassland (Figure 75A). We observed a high variation between 

regions and land cover for Theta with a higher Theta angle in Australia and South 

Hemisphere in Africa, particularly in croplands for Australia and for the five land cover 

classes in South Hemisphere in Africa in comparison with the North Hemisphere of this 

continent (Figure 75C). In the North Hemisphere in Africa and South America, Theta 

was lower on grasslands in comparison with savannas and woody savannas, in contrast 

with the South Hemisphere for both continents where Theta was higher on grasslands 

(Figure 75C). 

For Fractal dimension index we found higher values on woody savanna and croplands 

for the five regions, indicating a higher complexity of fire patches on these two land 

cover classes (Figure 75D). In the South Hemisphere in Africa and South America the 

complexity was similar for savannas and grasslands while this feature was higher for 

savannas on the North Hemisphere for both continents and for Australia (Figure 75D). 

Finally, we found the highest variation in the propagation rate with higher values of 

ROSI on grasslands for the five regions indicating the fastest fire propagation for this 

vegetation type and the lower values of this feature on the cropland/natural vegetation 

mosaic indicating the slowest propagation rate (Figure 75E). Comparing the five 

regions, we observed the fastest propagation rate in Australia and the lowest 

propagation in both hemispheres in South America, particularly in croplands and 

cropland/natural vegetation mosaics (Figure 75E).  
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Figure 75. Box-and-whisker plots of the distribution of the fire patch morphological features by GFED 

regions from the Global Fire Emissions Database (Ellis et al., 2010) and by Land cover from MODIS 

Land Cover Global product (MCD12C1) for 2012 (Friedl et al., 2010).  

5.3.2. Drivers of fire patch pattern  

From the five morphological traits analysed, we observed a variation of Theta angle, 

ROSL and Fractal dimension index by GFED region and land cover type (Figure 75). 

When we explored the drivers of these variation, we found that the highest values of 

theta in Australia and SHAF (Figure 76A) are associated to a Northwest-Southeast 

prevailing wind direction (~135°), while theta mean values near to 90° or slightly lower 

on SHSA and the Norther regions in Africa and South America were associated to East-

West (for SHSA) and Northeast-Southwest (for NHAF and NHSA) prevailing wind 

direction (Figure 76A and B). In fact, the GAMM including the mean wind direction 

and the GFED regions explained 37% of the variation of Theta angle, confirming our 

initial assumptions in which wind direction determine the fire scar orientation, being the 

best model compared with the lineal model, GLM and GAM (Figure 76C).  

For ROSL, we found the highest fire spread rate in Australia associated to the highest 

wind speed on this continent (Figure 76D and E). Looking at the effect of wind speed 

on fire spread rate, we found that wind speed explained less than 1% of its variance. 

However 20% is explained by the differences of wind speed between GFED regions and 

25% when we added the effect of land cover type (Figure 76C). This percentage was 

improved to 58% when we added both factors (land cover and GFED regions) as 

explanatory variables in a GAMM, and to 70% when we fixed the structure of the 

variance in a GLS, being our best model to explain the variation of ROSL on savannas 

and grasslands across continents. Moreover, we observed that ROSL was inversely 

proportional to ellipse ratio (Figure 77A) indicating that high ROSL values are 

associated to an elliptical fire shape (low ellipse ratio) while low ROSL values are more 

associated to circle fire shape.  
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Figure 76: A. Box-and-whisker plot of theta angle of fire scars by GFED region. Red line cut the y-axis 

at 90°. B. Proportion of prevailing wind direction by GFED region. C. Model generalized additive model 

(GAM) fit of theta angle relationship with the prevailing wind direction across GFED regions. D. Box-

and-whisker plot of ROSL (fire spread) by GFED region. E. Box-and-whisker plot of wind speed by 

GFED region. F. Model generalized additive model (GAM) fit of ROSL relationship with wind speed 

across GFED regions. 

Finally, Fractal dimension index responded to the increase of tree cover and the land 

cover, which explained 10% and 13% of its variation respectively when included 

independently in the lineal models. The complexity of fire patch increased rapidly 

between 0-10% of tree cover (high slope), while this increase was lower between 10 and 

30% (lower slope) (Figure 77B). We found few areas above 35% of tree cover. The 

contribution of the inclusion of the GFED regions in the models was very low, 

indicating that the differences between regions were less significant.   

         

Figure 77: A. Relationship between ellipse ration and ROSL. B.  Fractal dimension index variation in 

function of tree cover percent. 
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6. Conclusion 

The first global fire patch databases were generated using the data from MERIS and 

MODIS sensors and a regional one for Northern Hemisphere Africa from SENTINEL-2 

data. This was done by using a flood-fill algorithm to reconstruct the fire patches, and 

by extracting different pixel-level statistics. A standard deviation ellipse was also 

computed to assess the orientation of the fire patches and for further benchmarking of 

fire modules. 

The FireCCI41 and MCD64A1 collection 6 pixel level products were evaluated at the 

continental level in North America (boreal and temperate biomes), in a novel approach 

capturing the morphological features of fire patches, as indicators of fire spread 

processes to be used and modelled in DGVMs. The conclusion is that the continental 

variations in the diversity of fire types seem to be conserved with the global remote 

sensing products when compared to local forest services. However, missing fires in the 

central plains, and systematic bias in some trait values (fire size and elongation) were 

observed for the Boreal part of the continent, a similar result to what was obtained for 

Brazilian savannas. The hypothesis on the conservation of fire morphological features 

in the products is then partially fulfilled. We believe the continental pattern to be 

conserved, so empirical relationship between fire shape types and environmental 

variables can be extracted. But still, biases in some traits (fire size and elongation) do 

exist and should be quantified for better model benchmarking. 

Following the same trait-based approach used in North America, FireCCI41 and 

MCD64A1 collection 6 were intra and inter compared. From the intra comparison, we 

can conclude that even if the global pattern is conserved across the cut-offs, they may 

have a higher impact by regions. From the inter comparison, we can conclude that the 

diversity of both products matched better when using medium-high cut-offs, and 

smaller for the dispersion of fires patches. Therefore, the selection of cut-offs should be 

based on the goal of the study. When the goal is to explore the global major variability, 

extreme cut-offs should be selected. When the goal is to study the global patters, the 

cut-offs that better matched both products can be considered with more certainty.  

An inter-comparison at global scale was performed between the fire patch databases 

obtained from MCD45A1 collection 5.1, MCD64A1 collection 6, FireCCI41, 

FireCCI50 and FireCCI51. The level of agreement between all the products is good: the 

density of individual fire events and the power law distribution of fire size indicates that 

the thinner the resolution, the better the ability of the product to detect small fire events. 

The only exception arises from some differences in South America where MERIS 

images are missing, and from Sahel and central Asia. The higher spatial resolution of 

the Fire_cci products also allows reconstructing fire patches with higher shape 

complexity. Nevertheless, the structure of fire size was well-conserved between the two 

surveys, and the fire patch complexity is similar between the global products up to a 

normalization factor. We obtained similar results with FireCCI50 and FireCCI51. 

However, for the FireCCI51 product, we noticed that the areas where MCD64A1 still 

detect more fire patches are strongly reduced, and that the fire size distribution for 

larger fires are in much better agreement than for FireCCI41 and FireCCI50. It was also 

shown that, even if the value of the cut-off modifies the geometric features of the fire 

patches, its effect was much smaller than the differences between different global 

datasets.  
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The first maps of fire morphological traits using the high spatial resolution 

FireCCISFD10 BA product for Northern Hemisphere Africa were also provided. For 

the SFD derived fire patch database, the slope of the power law is steeper in agricultural 

regions, which means that the FireCCISFD10 detects a higher number of small fires 

than in other regions. This is expected since agricultural fires are usually small and 

controlled fires. The FireCCISFD10 BA product also exhibits a clear anti-correlation 

between the elongation of the fire patch and the fire patch complexity. A comparison 

with MCD64A1 was performed, but the limited time series covered by the SFD data 

and the necessity to restrain the comparison to fires big enough to be detected by 

MCD64A1 render difficult the comparison with MCD64A1. The results are however 

very encouraging, with the FireCCISFD10 product being able to detect more small fire 

patches than MCD64A1, and to reconstruct accurate fire patch perimeters. The derived 

fire patch databases can be used to go beyond BA for the benchmarking of fire modules, 

which are able to separate fire ignition from fire propagation. 

The last part of the report was centred on the research of potential drivers of fire patch 

morphology using the FireCCI41, FireCCI50, FieCCI51 and MCD64A1-derived fire 

patch database. First, correlation between fire size and fire intensity (from MCD14ML) 

was investigated. We showed that fire size followed a humped relationship with fire 

intensity for equatorial and tropical biomes. Fire size and fire intensity are proportional 

only for small/less intense fires. This suggests that large fire size is limited, probably by 

landscape fragmentation. Most DGVMs are able to reduce BA at the end of the fire 

season through limitation of available fuel, but they usually do not account explicitly for 

landscape fragmentation. Such an effect can impact the seasonality of predicted BA, and 

it should be included in most DGVMs. Using NCEP data, it could be seen that fire size 

tends to decrease with high wind speed: this effect is not yet accounted for in fire 

modules. However, it was not possible to find any correlation between fire orientation 

and wind orientation, but this can originate from the low accuracy of the NCEP data. 

All these results are very encouraging since they proved that the global fire patch 

databases can be used to investigate drivers for fire patch morphology at a global scale. 
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8. Annex 1: Acronyms and abbreviations 

A Patch Surface Area (m
2
) 

AUST Australia 

BA Burned Area 

BD Burned Date 

BOAS Boreal Asia 

BONA Boreal North America 

β-div β-diversity 

CA Patch core area (m
2
) 

CAR Climate Assessment Report 

CCI Climate Change Initiative 

CEAM Central America 

CEAS Central Asia 

CMUG Climate Modelling User Group 

CNFD Canadian National Fire Database 

CRAN Comprehensive R Archive Network 

CWFIS Canadian Wildland Fire Information System 

DGVM Dynamic Global Vegetation Model 

E Eccentricity 

ECV Essential Climate Variables 

ESA European Space Agency 

EQAS Equatorial Asia 

EURO Europe 

FD Fractal Dimension 

FDis Functional Dispersion 

FDiv Functional Divergence 

FEve Functional Evenness 

FI Fire intensity 

FOri Functional Originality 

FRic Functional Richness 

FRP Fire Radiative Power 

FS Fire Size 

FSpe Functional Specialization 

GAM Generalized Additive Models 

GAMM Generalized Additive Mixed Models 

GeoMAC Geospatial Multi-Agency Coordination 

GFED4 Global Fire Emissions Database 4 

GLS Generalized Least Square 

ID Individual Burned Patches 

LC_cci CCI Land Cover project 
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MCD45A1 MODIS Collection 5 Burned Area Product 

MCD64A1 MODIS Collection 6 Burned Area Product 

MERIS Medium Resolution Imaging Spectrometer 

MIDE Middle East 

MODIS Moderate Resolution Imaging Spectroradiometer  

mSD Mean Square Deviation 

NCEP National Centers for Environmental Prediction 

Nest Functional Nestedness 

NHAF Northern Hemisphere Africa 

NHSA Northern Hemisphere South America 

P Patch Perimeter (m) 

PCoA Principal Coordinates Analysis 

RGB Red-Green-Blue 

ROSL Rate of spread linear along the longest ellipse axis 

SDE Standard Deviation Ellipse 

SEAS Southern Asia 

SFD Small Fire Dataset 

SHAF Southern Hemisphere Africa 

SHSA Southern Hemisphere South America 

SI Shape Index 

SOC Self-organised Criticality 

TENA Temperate North America 

TO Tocantin State, Brazil. 

Turn Functional Turnover 

UTM Universal Transverse Mercator 

US United States 

VCF Vegetation Continuous Fields 

WGS84 World Geodetic System 1984 

WRS2 Worldwide Referencing System 2 
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