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MOTIVATION

d Wave climate characterization is important for a wide number of
marine activities

1 GCMs (general circulation models) provide future projections for
atmospheric variables with coarse spatial resolution

d GCMs simulate wind but not sea state parameters

dStatistical and dynamical downscaling models bridge the gap
between GCM simulations and decision makers requirements



dStatistical downscaling models construct an empirical relationship
between large scale and local scale variables using historical data

dAssuming that this relationship is stationary, future projections can
be made using GCM simulations of the large scale variables

This makes statistical downscaling models computationally efficient

dFor a rigorous comparaison between statistical and dynamical
methods we refer to the studies Wang et al. (2010)[1] and Laugel

etal., (2014)[2
Before us)ng] climate model simulations for making projections with statistical
* downscaling models, bias correction methods are needed. And this is not the

focus of this study




OBJECTIVES

Establish a statistical link function between the wind and the significant
wave height

U Predictand: the significant wave height (Hs) from the hindcast
database Homere

U Predictors: wind data from the ERAS reanalysis dataset

L Method: linear regression with a suitable penalization method

dThe relationship has to be physically interpretable



DATA

0 Hindcast database Homere:

*» Sea state hindcast database, based on
WAVEWATCH Il

< High resolution grid with one hour time step
“ From 1994 to 2019
“ The wind forcing: CFSR

1 ERAS reanalysis database:

“* Hourly wind components with 0.25°x0.25°

spatial resolution



CHALLENGES

The zonal wind component

L High dimensionality of the input
space

U Multicollinearity

U The statistical downscaling
model has to take into
consideration the sea state
composition (wind sea —
swells)
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local relationship between wind The [ocation of interest is situated at the Bay of Biscay at
and waves 45.2°N, 1.6°W



EXISTING WORK

d Camus et al. (2014b)[3] used a weather types model to downscale
wave parameters in north-west of Spain. To account for the swell
composition, the predictor was defined as the three-daily mean of sea
level pressure and pressure gradients

 Perez et al. 2014[4] proposed a method, called ESTELA, that defines
the wave generation area and wave travel time at any location
worldwide

d Camus et al.(2014a)[5] and Herermiller et al. (2016)[6] used the
ESTELA approach to define the predictors for their statistical
downscaling approach



THE MODEL

Hs =XTLB7L+X7G G +e (1)

1 Hs: significant wave height
4 xneexra: local and global predictors
npn et g : local and global coefficients

ae. model error



THE PREDICTORS

 The local predictor xn. is defined based on the wind speed and the fetch at the
local point

1 The global predictor x7G is defined as the projected wind: the wind
components at each grid point are projected into the bearing of the target point
In a great circle path



W=vVul2 +v12 cos12 (1/2 )
F=bH—6
f=atan(u/v)

Latitude

a where W is the projected wind, u
and v the wind components, b is the
great circle bearing, and s is the wind
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O The spatial coverage of X7¢: assuming that waves travel along a great circle path, grid
points whose path is blocked by land are neglected

O The temporal coverage of X7¢ is defined by two parameters, called travel time of waves
tJ; and the temporal width 2!/, using a fully data-driven approach

O At time t the global predictor X7¢ is defined as:

XTG ()= {WIL1T2 (t—ti]l —aldl :t—=t1 +adl ),... W T2 (t—=tlj—alj:t—tlj+al)),., W ImT2 (t—tim
—alm:t—tim+aim )}

U Where w12 (t—tlj—adj:t—tlj+adj ) IS the mean of the squared projected wind at location j
In a time window controlled by «/; and z//



- . and ., are estimated as follows :

(&) \adj Y=argmax cor(Hs, W T2 (t—tlj —alj:t—tlj+al)))
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MODEL ESTIMATION

dThe model r=xz+e can be estimated using least squares so that g7 = (wr7x)r-1
X7 Y

d However, in the case of high
multicollinearity, the matrix x77x
may be ill-conditioned

 The least squares estimates
have low bias and high variance
which affects the prediction

accuracy of the model l l |
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To address this issue, Ridge regression shrinks the coefficients by imposing a penality
on the residual sum of squares so that :

L Tridge =argmin [[XF—V][[I2 T2 +1][F][42 T2 (2)

dThe solution of (2) is g tridge= (X17x+4/)1—1 X717V . Ridge thus, adds positive elements
to the diagonal of x77.x before inversion

A In fact Ridge shrinks all the EOFs of x and a high amount of shrinkage is applied to
EOFs with small variance

d We extend this to the general case where g 1£7idge= (X177 X+i0)7—1 X17 ¥ where A is the
penality matrix. A can be interpreted as a prior on £

d LASSO is another shrinkage method. Instead of using the norm 2 in (2) it uses the
norm 1 so that

L Tlasso =argmin [[XF—-Y][I2 T2 +4][F][41



MODEL ESTIMATION

The penalized version of the model (1) can be written as:

(G TL,F TG ))=argmin |[XTL FTL +XTG FT6G —Hs||T2 +A FTC TT ALTG

4 In this study, we suppose that g7 is smooth and has the same EOFs
as x7¢ and we choose a=x77x)t« and 24 and «are selected using cross
validation



dThe period from 1994 to 2012 is used to estimate the parameters gz
and [ TG

12013 to 2016 is used to select the tuning parameters

12016 to 2019 is used as a validation period
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COMPARAISON WITH OTHER METHODS

-—“ o

Ridge 0.317

LASSO 0.96 0.318 0.03

Extended Ridge 0.961 0.313 0.03
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THE ESTIMATED /4 [ & USING THE EXTENDED
RIDGE
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CONCLUSION

[ A statistical downscaling model that links the large-scale wind and the local-
scale wave parameter (Hs) was proposed

1 Predictors definition is a crucial step in the statistical downscaling framework

1 The validation analysis proves the model’s skill in predicting wave climate

 Working on the trade off between prediction accuracy and interpretability
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